A176468 A symmetrical triangle:q=3;c(n,q)=Product[1 - q^i, {i, 1, n}];t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1.
1, 1, 1, 1, 3, 1, 1, 11, 11, 1, 1, 37, 101, 37, 1, 1, 117, 473, 473, 117, 1, 1, 359, -467, -10331, -467, 359, 1, 1, 1087, -38805, -666047, -666047, -38805, 1087, 1, 1, 3273, -564647, -22609991, -71238207, -22609991, -564647, 3273, 1, 1, 9833, -6313279
Offset: 0
Examples
{1}, {1, 1}, {1, 3, 1}, {1, 11, 11, 1}, {1, 37, 101, 37, 1}, {1, 117, 473, 473, 117, 1}, {1, 359, -467, -10331, -467, 359, 1}, {1, 1087, -38805, -666047, -666047, -38805, 1087, 1}, {1, 3273, -564647, -22609991, -71238207, -22609991, -564647, 3273, 1}, {1, 9833, -6313279, -656760847, -6104652967, -6104652967, -656760847, -6313279, 9833, 1}, {1, 29515, -63520279, -18148426855, -499870912759, -1504945075459, -499870912759, -18148426855, -63520279, 29515, 1}
Crossrefs
Cf. A060187
Programs
-
Mathematica
(*A060187*); p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}]; f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]]; c[n_, q_] = Product[1 - q^i, {i, 1, n}]; t[n_, m_, q_] := f[n, m] - c[n, q]/(c[m, q]*c[n - m, q]) + 1; Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
Comments