cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176476 Partial sums of A012814.

Original entry on oeis.org

0, 1, 6, 27, 113, 464, 1896, 7738, 31571, 128800, 525455, 2143647, 8745216, 35676948, 145547524, 593775045, 2422362078, 9882257735, 40315615409, 164471408184, 670976837020, 2737314167774, 11167134898975, 45557394660800, 185855747875875, 758216295635151
Offset: 0

Views

Author

Carmine Suriano, Apr 18 2010

Keywords

Comments

Old name was "a(n) is the minimum integer that can be expressed as the sum of n Padovan numbers (see A000931)".
Lim_{n -> infinity} a(n+1)/a(n) = p^5 = 4.0795956..., where p is the plastic constant (A060006).

Examples

			a(5) = A000931(2) + A000931(7) + A000931(12) + A000931(17) + A000931(22) + A000931(27) = 0 + 1 + 5 + 21 + 86 + 351 = 464.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-9,5,-1},{0,1,6,27},30] (* Harvey P. Dale, Feb 08 2025 *)
  • PARI
    a(n) = my(v=vector(n+1), u=[0,1,6,27]); for(k=1, n+1, v[k]=if(k<=4, u[k], 5*v[k-1] - 4*v[k-2] + v[k-3] + 1)); v[n+1] \\ Jianing Song, Feb 04 2019

Formula

a(n) = A012855(n+3) - 1. a(n) = 6*a(n-1) - 9*a(n-2) + 5*a(n-3) - a(n-4). - R. J. Mathar, Oct 18 2010
G.f.: x/(1 - 6*x + 9*x^2 - 5*x^3 + x^4). - Colin Barker, Feb 03 2012
From Jianing Song, Feb 04 2019: (Start)
a(n+3) = 5*a(n+2) - 4*a(n+1) + a(n) + 1.
a(n) = Sum_{k=0..n} A012814(k) = Sum_{k=0..n} A000931(5*k+2). (End)

Extensions

New name, more terms and a(0) = 0 prepended by Jianing Song, Feb 04 2019