A176481 Triangle, read by rows, defined by T(n, k) = b(n) - b(k) - b(n-k) + 2, where b(n) = A001333(n).
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 11, 13, 11, 1, 1, 25, 33, 33, 25, 1, 1, 59, 81, 87, 81, 59, 1, 1, 141, 197, 217, 217, 197, 141, 1, 1, 339, 477, 531, 545, 531, 477, 339, 1, 1, 817, 1153, 1289, 1337, 1337, 1289, 1153, 817, 1, 1, 1971, 2785, 3119, 3249, 3283, 3249, 3119, 2785, 1971, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 3, 1; 1, 5, 5, 1; 1, 11, 13, 11, 1; 1, 25, 33, 33, 25, 1; 1, 59, 81, 87, 81, 59, 1; 1, 141, 197, 217, 217, 197, 141, 1; 1, 339, 477, 531, 545, 531, 477, 339, 1; 1, 817, 1153, 1289, 1337, 1337, 1289, 1153, 817, 1; 1, 1971, 2785, 3119, 3249, 3283, 3249, 3119, 2785, 1971, 1;
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- B. Adamczewski, Ch. Frougny, A. Siegel and W. Steiner, Rational numbers with purely periodic beta-expansion, arXiv:0907.0206 [math.NT], 2009-2010; Bull. Lond. Math. Soc. 42:3 (2010), pp. 538-552.
Crossrefs
Cf. A001333.
Programs
-
Magma
b:= func< n| Round(((1+Sqrt(2))^n + (1-Sqrt(2))^n)/2) >; [[b(n)-b(k)-b(n-k)+2: k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 06 2019
-
Mathematica
b[n_]:= LucasL[n, 2]/2; T[n_, k_]:= b[n] -b[k] -b[n-k] +2; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 06 2019 *)
-
PARI
{b(n) = round(((1+sqrt(2))^n + (1-sqrt(2))^n)/2)}; {T(n,k) = b(n) -b(k) -b(n-k) +2}; for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, May 06 2019
-
Sage
def b(m): return lucas_number2(m,2,-1)/2 def T(n, k): return b(n) - b(k) - b(n-k) + 2 [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 06 2019
Formula
Let b(n) = ((1+sqrt(2))^n + (1-sqrt(2))^n)/2 = A001333(n), then T(n, k) = b(n) - b(k) - b(n-k) + 2.
Extensions
Edited by G. C. Greubel, May 06 2019
Comments