A176482 Triangle, read by rows, defined by T(n, k) = b(n) - b(k) - b(n-k) + 1 (see formula section for recurrence for b(n)).
1, 1, 1, 1, 3, 1, 1, 9, 9, 1, 1, 29, 35, 29, 1, 1, 94, 120, 120, 94, 1, 1, 304, 395, 415, 395, 304, 1, 1, 983, 1284, 1369, 1369, 1284, 983, 1, 1, 3179, 4159, 4454, 4519, 4454, 4159, 3179, 1, 1, 10281, 13457, 14431, 14706, 14706, 14431, 13457, 10281, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 3, 1; 1, 9, 9, 1; 1, 29, 35, 29, 1; 1, 94, 120, 120, 94, 1; 1, 304, 395, 415, 395, 304, 1; 1, 983, 1284, 1369, 1369, 1284, 983, 1; 1, 3179, 4159, 4454, 4519, 4454, 4159, 3179, 1; 1, 10281, 13457, 14431, 14706, 14706, 14431, 13457, 10281, 1; 1, 33249, 43527, 46697, 47651, 47861, 47651, 46697, 43527, 33249, 1; ... T(4,3) = a(4) - a(3) - a(4 - 3) + 1 = 42 - 13 - 1 + 1 = 29. - _Indranil Ghosh_, Feb 18 2017
Links
- Indranil Ghosh, Rows 0..120, flattened
- B. Adamczewski, Ch. Frougny, A. Siegel and W. Steiner, Rational numbers with purely periodic beta-expansion, Bull. Lond. Math. Soc. 42:3 (2010), pp. 538-552; also arXiv:0907.0206 [math.NT], 2009-2010.
- Indranil Ghosh, Python Program to generate the b-file
- Roger L. Bagula, Three methods to generate the sequence b(n)
Crossrefs
Cf. A095263.
Programs
-
Mathematica
b[0]:=0; b[1]:=1; b[2]:=4; b[3]=13; b[n_]:= b[n]= 4*b[n-1] -3*b[n-2] + 2*b[n-3] -b[n-4]; T[n_, m_]:=b[n]-b[m]-b[n-m]+1; Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
-
PARI
{b(n) = if(n==0, 0, if(n==1, 1, if(n==2, 4, if(n==3, 13, 4*b(n-1) -3*b(n-2) + 2*b(n-3) -b(n-4)))))}; {T(n,k) = b(n) -b(k) -b(n-k) +1}; for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, May 06 2019
-
Python
# see Indranil Ghosh link
-
Sage
def b(n): if (n==0): return 0 elif (n==1): return 1 elif (n==2): return 4 elif (n==3): return 13 else: return 4*b(n-1) -3*b(n-2) +2*b(n-3) -b(n-4) def T(n, k): return b(n) - b(k) - b(n-k) + 1 [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 06 2019
Formula
With b(n) = 4*b(n-1) - 3*b(n-2) + 2*b(n-3) - b(n-4), with b(0) = 0, b(1) = 1, b(2) = 4 and b(3) = 13, then the triangle is generated by T(n, k) = b(n) - b(k) - b(n-k) + 1.
Extensions
Name and formula sections edited by Indranil Ghosh, Feb 18 2017
Edited by G. C. Greubel, May 06 2019