cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176485 First column of triangle in A176452.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 13, 25, 48, 92, 176, 338, 649, 1246, 2392, 4594, 8823, 16945, 32545, 62509, 120060, 230598, 442910, 850701, 1633948, 3138339, 6027842, 11577747, 22237515, 42711863, 82037200, 157569867, 302646401, 581296715, 1116503866, 2144482948, 4118935248, 7911290530
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2010

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 3*p(k+1), see example. [Joerg Arndt, Dec 18 2012]
Row 2 of Table 1 of Elsholtz, row 1 being A002572. - Jonathan Vos Post, Aug 30 2011

Examples

			From _Joerg Arndt_, Dec 18 2012: (Start)
There are a(7+1)=25 compositions 7=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 3*p(k+1):
[ 1]  [ 1 1 1 1 1 1 1 ]
[ 2]  [ 1 1 1 1 1 2 ]
[ 3]  [ 1 1 1 1 2 1 ]
[ 4]  [ 1 1 1 1 3 ]
[ 5]  [ 1 1 1 2 1 1 ]
[ 6]  [ 1 1 1 2 2 ]
[ 7]  [ 1 1 1 3 1 ]
[ 8]  [ 1 1 2 1 1 1 ]
[ 9]  [ 1 1 2 1 2 ]
[10]  [ 1 1 2 2 1 ]
[11]  [ 1 1 2 3 ]
[12]  [ 1 1 3 1 1 ]
[13]  [ 1 1 3 2 ]
[14]  [ 1 2 1 1 1 1 ]
[15]  [ 1 2 1 1 2 ]
[16]  [ 1 2 1 2 1 ]
[17]  [ 1 2 1 3 ]
[18]  [ 1 2 2 1 1 ]
[19]  [ 1 2 2 2 ]
[20]  [ 1 2 3 1 ]
[21]  [ 1 2 4 ]
[22]  [ 1 3 1 1 1 ]
[23]  [ 1 3 1 2 ]
[24]  [ 1 3 2 1 ]
[25]  [ 1 3 3 ]
(End)
		

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[2n-1, 1, 3];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* g.f. as given in the Elsholtz/Heuberger/Prodinger reference */
    N=66;  q='q+O('q^N);
    t=3;  /* t-ary: t=2 for A002572, t=3 for A176485, t=4 for A176503  */
    L=2 + 2*ceil( log(N) / log(t) );
    f(k) = (1-t^k)/(1-t);
    la(j) = prod(i=1, j, q^f(i) / ( 1 - q^f(i) ) );
    nm=sum(j=0, L, (-1)^j * q^f(j) * la(j) );
    dn=sum(j=0, L, (-1)^j * la(j) );
    gf = nm / dn;
    Vec( gf )
    /* Joerg Arndt, Dec 27 2012 */

Formula

a(n) = A294775(n-1,2). - Alois P. Heinz, Nov 08 2017

Extensions

Extended by Jonathan Vos Post, Aug 30 2011
Added terms beyond a(20)=62509, Joerg Arndt, Dec 18 2012.