A176488
Triangle T(n,k) = A008292(n+1,k+1) + A176487(n,k) - 1, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 23, 23, 1, 1, 54, 136, 54, 1, 1, 117, 612, 612, 117, 1, 1, 244, 2395, 4850, 2395, 244, 1, 1, 499, 8605, 31271, 31271, 8605, 499, 1, 1, 1010, 29242, 176522, 312448, 176522, 29242, 1010, 1, 1, 2033, 95714, 910466, 2620832, 2620832, 910466
Offset: 0
1;
1, 1;
1, 8, 1;
1, 23, 23, 1;
1, 54, 136, 54, 1;
1, 117, 612, 612, 117, 1;
1, 244, 2395, 4850, 2395, 244, 1;
1, 499, 8605, 31271, 31271, 8605, 499, 1;
1, 1010, 29242, 176522, 312448, 176522, 29242, 1010, 1;
1, 2033, 95714, 910466, 2620832, 2620832, 910466, 95714, 2033, 1;
1, 4080, 305317, 4407094, 19476436, 31448746, 19476436, 4407094, 305317, 4080, 1;
-
A176488 := proc(n,k)
A008292(n+1,k+1)+A176487(n,k)-1 ;
end proc: # R. J. Mathar, Jun 16 2015
-
<< DiscreteMath`Combinatorica`;
t[n_, m_, 0] := Binomial[n, m];
t[n_, m_, 1] := Eulerian[1 + n, m];
t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 1] + t[n, m, q - 2] - 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
A176489
Triangle T(n,k) = A176487(n,k)+A176488(n,k)-1 read by rows 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 35, 35, 1, 1, 82, 206, 82, 1, 1, 177, 922, 922, 177, 1, 1, 368, 3599, 7284, 3599, 368, 1, 1, 751, 12917, 46923, 46923, 12917, 751, 1, 1, 1518, 43876, 264810, 468706, 264810, 43876, 1518, 1, 1, 3053, 143588, 1365740, 3931310
Offset: 0
1;
1, 1;
1, 12, 1;
1, 35, 35, 1;
1, 82, 206, 82, 1;
1, 177, 922, 922, 177, 1;
1, 368, 3599, 7284, 3599, 368, 1;
1, 751, 12917, 46923, 46923, 12917, 751, 1;
1, 1518, 43876, 264810, 468706, 264810, 43876, 1518, 1;
1, 3053, 143588, 1365740, 3931310, 3931310, 1365740, 143588, 3053, 1;
1, 6124, 457997, 6610700, 29214758, 47173244, 29214758, 6610700, 457997, 6124, 1;
-
A176489 := proc(n,k)
A176487(n,k)+A176488(n,k)-1 ;
end proc: # R. J. Mathar, Jun 16 2015
-
<< DiscreteMath`Combinatorica`;
t[n_, m_, 0] := Binomial[n, m];
t[n_, m_, 1] := Eulerian[1 + n, m];
t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 1] + t[n, m, q - 2] - 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
A176490
Triangle T(n,k) = A008292(n+1,k+1) + A060187(n+1,k+1)- 1 read along rows 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 9, 1, 1, 33, 33, 1, 1, 101, 295, 101, 1, 1, 293, 1983, 1983, 293, 1, 1, 841, 11733, 25963, 11733, 841, 1, 1, 2425, 64949, 275341, 275341, 64949, 2425, 1, 1, 7053, 346219, 2573521, 4831203, 2573521, 346219, 7053, 1, 1, 20685, 1804179, 22163163
Offset: 0
1;
1, 1;
1, 9, 1;
1, 33, 33, 1;
1, 101, 295, 101, 1;
1, 293, 1983, 1983, 293, 1;
1, 841, 11733, 25963, 11733, 841, 1;
1, 2425, 64949, 275341, 275341, 64949, 2425, 1;
1, 7053, 346219, 2573521, 4831203, 2573521, 346219, 7053, 1;
1, 20685, 1804179, 22163163, 70723647, 70723647, 22163163, 1804179, 20685, 1;
1, 61073, 9268777, 180504391, 916661395, 1542816715, 916661395, 180504391, 9268777, 61073, 1;
-
A176490 := proc(n,k)
A008292(n+1,k+1)+A060187(n+1,k+1)-1 ;
end proc: # R. J. Mathar, Jun 16 2015
-
(*A060187*)
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
<< DiscreteMath`Combinatorica`;
t[n_, m_, 0] := Binomial[n, m];
t[n_, m_, 1] := Eulerian[1 + n, m];
t[n_, m_, 2] := f[n, m];
t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
A176491
Triangle T(n,k) = binomial(n,k) + A176490(n,k) - 1 read along rows 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 35, 35, 1, 1, 104, 300, 104, 1, 1, 297, 1992, 1992, 297, 1, 1, 846, 11747, 25982, 11747, 846, 1, 1, 2431, 64969, 275375, 275375, 64969, 2431, 1, 1, 7060, 346246, 2573576, 4831272, 2573576, 346246, 7060, 1, 1, 20693, 1804214, 22163246
Offset: 0
1;
1, 1;
1, 10, 1;
1, 35, 35, 1;
1, 104, 300, 104, 1;
1, 297, 1992, 1992, 297, 1;
1, 846, 11747, 25982, 11747, 846, 1;
1, 2431, 64969, 275375, 275375, 64969, 2431, 1;
1, 7060, 346246, 2573576, 4831272, 2573576, 346246, 7060, 1;
1, 20693, 1804214, 22163246, 70723772, 70723772, 22163246, 1804214, 20693, 1;
1, 61082, 9268821, 180504510, 916661604, 1542816966, 916661604, 180504510, 9268821, 61082, 1;
-
A176491 := proc(n,k)
A176490(n,k)+binomial(n,k)-1 ;
end proc: # R. J. Mathar, Jun 16 2015
-
(*A060187*)
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
<< DiscreteMath`Combinatorica`;
t[n_, m_, 0] := Binomial[n, m];
t[n_, m_, 1] := Eulerian[1 + n, m];
t[n_, m_, 2] := f[n, m];
t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
A176492
Triangle T(n,k) = A176492(n,k) + A008292(n+1,k+1) - 1 read along rows 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 13, 1, 1, 45, 45, 1, 1, 129, 365, 129, 1, 1, 353, 2293, 2293, 353, 1, 1, 965, 12937, 28397, 12937, 965, 1, 1, 2677, 69261, 290993, 290993, 69261, 2677, 1, 1, 7561, 360853, 2661809, 4987461, 2661809, 360853, 7561, 1, 1, 21705, 1852053, 22618437
Offset: 0
1;
1, 1;
1, 13, 1;
1, 45, 45, 1;
1, 129, 365, 129, 1;
1, 353, 2293, 2293, 353, 1;
1, 965, 12937, 28397, 12937, 965, 1;
1, 2677, 69261, 290993, 290993, 69261, 2677, 1;
1, 7561, 360853, 2661809, 4987461, 2661809, 360853, 7561, 1;
, 21705, 1852053, 22618437, 72034125, 72034125, 22618437, 1852053, 21705, 1;
1, 63117, 9421457, 182707997, 926399717, 1558541213, 926399717, 182707997, 9421457, 63117, 1;
-
A176492 := proc(n,k)
A176491(n,k)+A008292(n+1,k+1)-1 ;
end proc: # R. J. Mathar, Jun 16 2015
-
(*A060187*)
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
<< DiscreteMath`Combinatorica`;
t[n_, m_, 0] := Binomial[n, m];
t[n_, m_, 1] := Eulerian[1 + n, m];
t[n_, m_, 2] := f[n, m];
t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
Showing 1-5 of 5 results.
Comments