cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176490 Triangle T(n,k) = A008292(n+1,k+1) + A060187(n+1,k+1)- 1 read along rows 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 33, 33, 1, 1, 101, 295, 101, 1, 1, 293, 1983, 1983, 293, 1, 1, 841, 11733, 25963, 11733, 841, 1, 1, 2425, 64949, 275341, 275341, 64949, 2425, 1, 1, 7053, 346219, 2573521, 4831203, 2573521, 346219, 7053, 1, 1, 20685, 1804179, 22163163
Offset: 0

Views

Author

Roger L. Bagula, Apr 19 2010

Keywords

Comments

Row sums are: 1, 2, 11, 68, 499, 4554, 51113, 685432, 10684791, 189423350, 3755807989,....
Conjecture on the row sums s(n): 859*(n+1)*s(n) +(-2577*n^2-15955*n+33324)*s(n-1) +(1718*n^3+39275*n^2-102106*n-16383)*s(n-2) +(-25038*n^3+35127*n^2+252701*n-453082)*s(n-3) +(n-3)*(57834*n^2-211893*n+212386)*s(n-4) -2*(17257*n-29530)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jun 16 2015

Examples

			1;
1, 1;
1, 9, 1;
1, 33, 33, 1;
1, 101, 295, 101, 1;
1, 293, 1983, 1983, 293, 1;
1, 841, 11733, 25963, 11733, 841, 1;
1, 2425, 64949, 275341, 275341, 64949, 2425, 1;
1, 7053, 346219, 2573521, 4831203, 2573521, 346219, 7053, 1;
1, 20685, 1804179, 22163163, 70723647, 70723647, 22163163, 1804179, 20685, 1;
1, 61073, 9268777, 180504391, 916661395, 1542816715, 916661395, 180504391, 9268777, 61073, 1;
		

Crossrefs

Programs

  • Maple
    A176490 := proc(n,k)
        A008292(n+1,k+1)+A060187(n+1,k+1)-1 ;
    end proc: # R. J. Mathar, Jun 16 2015
  • Mathematica
    (*A060187*)
    p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
    f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
    << DiscreteMath`Combinatorica`;
    t[n_, m_, 0] := Binomial[n, m];
    t[n_, m_, 1] := Eulerian[1 + n, m];
    t[n_, m_, 2] := f[n, m];
    t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
    Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]