A176490 Triangle T(n,k) = A008292(n+1,k+1) + A060187(n+1,k+1)- 1 read along rows 0<=k<=n.
1, 1, 1, 1, 9, 1, 1, 33, 33, 1, 1, 101, 295, 101, 1, 1, 293, 1983, 1983, 293, 1, 1, 841, 11733, 25963, 11733, 841, 1, 1, 2425, 64949, 275341, 275341, 64949, 2425, 1, 1, 7053, 346219, 2573521, 4831203, 2573521, 346219, 7053, 1, 1, 20685, 1804179, 22163163
Offset: 0
Examples
1; 1, 1; 1, 9, 1; 1, 33, 33, 1; 1, 101, 295, 101, 1; 1, 293, 1983, 1983, 293, 1; 1, 841, 11733, 25963, 11733, 841, 1; 1, 2425, 64949, 275341, 275341, 64949, 2425, 1; 1, 7053, 346219, 2573521, 4831203, 2573521, 346219, 7053, 1; 1, 20685, 1804179, 22163163, 70723647, 70723647, 22163163, 1804179, 20685, 1; 1, 61073, 9268777, 180504391, 916661395, 1542816715, 916661395, 180504391, 9268777, 61073, 1;
Programs
-
Maple
A176490 := proc(n,k) A008292(n+1,k+1)+A060187(n+1,k+1)-1 ; end proc: # R. J. Mathar, Jun 16 2015
-
Mathematica
(*A060187*) p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}]; f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]]; << DiscreteMath`Combinatorica`; t[n_, m_, 0] := Binomial[n, m]; t[n_, m_, 1] := Eulerian[1 + n, m]; t[n_, m_, 2] := f[n, m]; t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1; Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
Comments