cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176502 a(n) = 2*Farey(m; I) - 1 where m = Fibonacci (n + 1) and I = [1/n, 1].

Original entry on oeis.org

1, 3, 7, 17, 37, 99, 243, 633, 1673, 4425, 11515, 30471, 80055, 210157, 553253, 1454817, 3821369, 10040187, 26360759, 69201479, 181628861, 476576959, 1250223373, 3279352967, 8600367843, 22551873573, 59128994931, 155014246263, 406350098913, 1065104999651
Offset: 1

Views

Author

Sameen Ahmed Khan, Apr 21 2010

Keywords

Comments

This sequence provides a strict upper bound of the set of equivalent resistances formed by any conceivable network (series/parallel or bridge, or non-planar) of n equal resistors. Consequently it provides an strict upper bound of the sequences: A048211, A153588, A174283, A174284, A174285 and A174286. This sequence provides a better strict upper bound than A176500 but is harder to compute. [Corrected by Antoine Mathys, May 07 2019]
The claim that this sequence is a strict upper bound for the number of representable resistance values of any conceivable network is incorrect for networks with more than 10 resistors, in which non-planar configurations can also occur. Whether the sequence provides at least a valid upper bound for planar networks with generalized bridge circuits (A337516) is difficult to decide on the basis of the insufficient number of terms in A174283 and A337516. See the linked illustrations of the respective quotients. - Hugo Pfoertner, Jan 25 2021

Examples

			n = 5, , I = [1/5, 1], m = Fibonacci(6) = 8, Farey(8) = 23, Farey(8; I) = 19, Grand Set(5) = 37.
		

Crossrefs

Programs

  • Mathematica
    a1[n_ /; n<4] := 2^(n-1); a1[n_] := Module[{m = Fibonacci[n+1], v}, v = Reap[Do[Sow[j/i], {i, n+1, m}, {j, 1, (i-1)/n}]][[2, 1]]; Total[EulerPhi[ Range[m]]] - Length[v // Union]];
    a[n_] := 2 a1[n] - 1;
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 23}] (* Jean-François Alcover, Aug 30 2018, after Antoine Mathys *)
  • PARI
    farey(n) = sum(i=1, n, eulerphi(i)) + 1;
    a176501(n) = my(m=fibonacci(n + 1), count=0); for(b=n+1, m, for(a=1, (b-1)/n, if(gcd(a,b)==1, count++))); farey(m) - 1 - count;
    a(n) = 2 * a176501(n) - 1; \\ Antoine Mathys, May 07 2019

Formula

a(n) = 2 * A176501(n) - 1. - Antoine Mathys, Aug 07 2018

Extensions

a(19)-a(27) from Antoine Mathys, Aug 10 2018
a(28)-a(30) from Antoine Mathys, May 07 2019