cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176508 Triangle, read by rows, defined by T(n, k) = b(n) - b(k) - b(n-k) + 1, b(n) = A003269(n).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 3, 5, 6, 7, 7, 7, 6, 5, 3, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 19 2010

Keywords

Comments

Row sums are: {1, 2, 2, 2, 2, 6, 10, 14, 18, 30, 51,...}.

Examples

			Triangle:
  1;
  1, 1;
  1, 0, 1;
  1, 0, 0, 1;
  1, 0, 0, 0, 1;
  1, 1, 1, 1, 1, 1;
  1, 1, 2, 2, 2, 1, 1;
  1, 1, 2, 3, 3, 2, 1, 1;
  1, 1, 2, 3, 4, 3, 2, 1, 1;
  1, 2, 3, 4, 5, 5, 4, 3, 2, 1;
  1, 3, 5, 6, 7, 7, 7, 6, 5, 3, 1;
...
T(6,3) = A003269(6) - A003269(3) - A003269(6-3) + 1 = 3 - 1 - 1 + 1 = 2. - _Indranil Ghosh_, Feb 17 2017
		

Crossrefs

Cf. A003269.

Programs

  • Magma
    b:= func< n | n eq 0 select 0 else (&+[Binomial(n-1-3*j,j): j in [0..Floor((n-1)/3)]]) >; [[b(n)-b(k)-b(n-k)+1: k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 06 2019
    
  • Mathematica
    b[0]:= 0; b[1]:= 1; b[2]:= 1; b[3]:= 1; b[n_]:= b[n] = b[n-1] + b[n-4]; T[n_, m_]:= b[n] - b[m] - b[n-m] + 1; Table[T[n, m], {n,0,10}, {m,0,n} ]//Flatten
  • PARI
    {b(n) = if(n==0, 0, if(n==1, 1, if(n==2, 1, if(n==3, 1, b(n-1) +b(n-4)))) )};
    {T(n, k) = b(n) -b(k) -b(n-k) +1}; \\ G. C. Greubel, May 06 2019
    
  • Python
    # See Indranil Ghosh link
    
  • Sage
    def b(n):
        if (n==0): return 0
        elif (n==1): return 1
        elif (n==2): return 1
        elif (n==3): return 1
        else: return b(n-1) + b(n-4)
    def T(n, k): return b(n) - b(k) - b(n-k) + 1
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 06 2019

Formula

T(n,m) = A003269(n) - A003269(m) - A003269(n-m) + 1.

Extensions

Name and formula sections were edited and corrected by Indranil Ghosh, Feb 17 2017
Edited by G. C. Greubel, May 06 2019