cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176560 A symmetrical triangle recursion:q=5;t(n,m,0)=Binomial[n,m];t(n,m,1)=Narayana(n,m);t(n,m,2)=Eulerian(n+1,m);t(n,m,q)=t(n,m,g-2)+t(n,m,q-3).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 16, 16, 1, 1, 35, 85, 35, 1, 1, 71, 351, 351, 71, 1, 1, 140, 1295, 2590, 1295, 140, 1, 1, 274, 4488, 16108, 16108, 4488, 274, 1, 1, 537, 14943, 89409, 157953, 89409, 14943, 537, 1, 1, 1057, 48379, 457711, 1315645, 1315645, 457711, 48379
Offset: 0

Views

Author

Roger L. Bagula, Apr 20 2010

Keywords

Comments

Row sums are:
{1, 2, 8, 34, 157, 846, 5462, 41742, 367733, 3645586, 39975575,...}.

Examples

			{1},
{1, 1},
{1, 6, 1},
{1, 16, 16, 1},
{1, 35, 85, 35, 1},
{1, 71, 351, 351, 71, 1},
{1, 140, 1295, 2590, 1295, 140, 1},
{1, 274, 4488, 16108, 16108, 4488, 274, 1},
{1, 537, 14943, 89409, 157953, 89409, 14943, 537, 1},
{1, 1057, 48379, 457711, 1315645, 1315645, 457711, 48379, 1057, 1},
{1, 2090, 153461, 2208437, 9751973, 15743651, 9751973, 2208437, 153461, 2090, 1}
		

Crossrefs

Programs

  • Mathematica
    << DiscreteMath`Combinatorica`
    t[n_, m_, 0] := Binomial[n, m];
    t[n_, m_, 1] := Binomial[n, m]*Binomial[n + 1, m]/(m + 1);
    t[n_, m_, 2] := Eulerian[1 + n, m];
    t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
    Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]

Formula

q=5;
t(n,m,0)=Binomial[n,m];
t(n,m,1)=Narayana(n,m);
t(n,m,2)=Eulerian(n+1,m);
t(n,m,q)=t(n,m,g-2)+t(n,m,q-3)