A176561 A symmetrical triangle recursion:q=6;t(n,m,0)=Binomial[n,m];t(n,m,1)=Narayana(n,m);t(n,m,2)=Eulerian(n+1,m);t(n,m,q)=t(n,m,g-2)+t(n,m,q-3).
1, 1, 1, 1, 7, 1, 1, 18, 18, 1, 1, 38, 90, 38, 1, 1, 75, 360, 360, 75, 1, 1, 145, 1309, 2609, 1309, 145, 1, 1, 280, 4508, 16142, 16142, 4508, 280, 1, 1, 544, 14970, 89464, 158022, 89464, 14970, 544, 1, 1, 1065, 48414, 457794, 1315770, 1315770, 457794, 48414
Offset: 0
Examples
{1}, {1, 1}, {1, 7, 1}, {1, 18, 18, 1}, {1, 38, 90, 38, 1}, {1, 75, 360, 360, 75, 1}, {1, 145, 1309, 2609, 1309, 145, 1}, {1, 280, 4508, 16142, 16142, 4508, 280, 1}, {1, 544, 14970, 89464, 158022, 89464, 14970, 544, 1}, {1, 1065, 48414, 457794, 1315770, 1315770, 457794, 48414, 1065, 1}, {1, 2099, 153505, 2208556, 9752182, 15743902, 9752182, 2208556, 153505, 2099, 1}
Programs
-
Mathematica
<< DiscreteMath`Combinatorica` t[n_, m_, 0] := Binomial[n, m]; t[n_, m_, 1] := Binomial[n, m]*Binomial[n + 1, m]/(m + 1); t[n_, m_, 2] := Eulerian[1 + n, m]; t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1; Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
Formula
q=6;
t(n,m,0)=Binomial[n,m];
t(n,m,1)=Narayana(n,m);
t(n,m,2)=Eulerian(n+1,m);
t(n,m,q)=t(n,m,g-2)+t(n,m,q-3)
Comments