A176585
Primes of the form n^3+Smallest square, (Smallest square >= n^3).
Original entry on oeis.org
2, 17, 269, 281233, 1770217, 1826609, 2520841, 3907529, 7595017, 8665471, 9828089, 11280377, 12259063, 17235221, 27654961, 54008809, 70583033, 75196799, 85018949, 87240233, 106316057, 111499057, 168061561, 176255669, 201105409
Offset: 1
-
r[n_]:=n^3;f[n_]:=r[n]+Ceiling[Sqrt[r[n]]]^2;Select[Table[f[n],{n,0,6!}],PrimeQ[ # ]&]
ssn3[n_]:=n^3+(Ceiling[Sqrt[n^3]])^2; Select[Array[ssn3,500],PrimeQ] (* Harvey P. Dale, Jun 23 2017 *)
A176586
Primes of the form : n^3 + Largest square + Smallest square, (Largest square <= n^3, Smallest square >= n^3).
Original entry on oeis.org
3, 222601, 2824933, 3573761, 4215749, 5183821, 6001997, 6592613, 7886597, 8592401, 9725393, 10127813, 10531813, 12751093, 13720661, 15263009, 18087529, 30232597, 52730113, 68727469, 79395353, 109787269, 139967461, 162040453
Offset: 1
-
r[n_]:=n^3;f[n_]:=r[n]+Floor[Sqrt[r[n]]]^2+Ceiling[Sqrt[r[n]]]^2;Select[Table[f[n],{n,0,7!}],PrimeQ[ # ]&]
lsss[n_]:=Module[{c=n^3},c+Floor[Sqrt[c]]^2+Ceiling[Sqrt[c]]^2]; Select[Array[ lsss,1000],PrimeQ] (* Harvey P. Dale, Feb 22 2023 *)
-
print1(3);for(n=2,1e3,t=sqrtint(n^3);if(isprime(t=n^3+t^2+ (t+1)^2) && !issquare(n),print1(", "t))) \\ Charles R Greathouse IV, Apr 15 2012
Showing 1-2 of 2 results.
Comments