cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176648 a(n+1) = m + Sum_{j=0..n} (a(j)*a(n-j) + k) for n>=1, with a(0)=1, a(1)=5, k=1 and m=1.

Original entry on oeis.org

1, 5, 13, 55, 245, 1215, 6317, 34187, 190093, 1079983, 6239989, 36554363, 216600357, 1295906671, 7817665373, 47499325915, 290411653437, 1785401003887, 11030252590149, 68444469966843, 426386709191893, 2665740642304879
Offset: 0

Views

Author

Richard Choulet, Apr 22 2010

Keywords

Examples

			a(2) = 2*1*5 + 2 + 1 = 13.
a(3) = 2*1*13 + 2 + 5^2 + 1 + 1 = 55.
a(4) = 2*1*55 + 2 + 2*5*13 + 2 + 1 = 245.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    Coefficients(R!( (1-x -Sqrt(1 -6*x -7*x^2 +16*x^3 -8*x^4))/(2*x*(1-x)) )); // G. C. Greubel, Jul 02 2021
    
  • Maple
    # First program
    m:=1: : k := 1 : a(0):=1 : a(1):=5:
    for n from 1 to 51 do a(n+1):=sum(a(p)*a(n-p)+k, p=0..n) +m : od :
    seq(a(n), n=0..40);
    # Second program
    n:= 40;
    S:= series((1-x -sqrt(1 -6*x -7*x^2 +16*x^3 -8*x^4))/(2*x*(1-x)), x, n+1);
    seq(coeff(S, x, j), j = 0..n); # modified by G. C. Greubel, Jul 02 2021
  • Mathematica
    a[n_,k_,m_]:= a[n,k,m]= If[n<2, 5^n, m +k*n +Sum[a[j,k,m]*a[n-j-1,k,m], {j,0,n-1}]];
    Table[a[n, 1, 1], {n, 0, 40}] (* G. C. Greubel, Jul 02 2021 *)
  • Sage
    @CachedFunction
    def a(n,k,m): return 5^n if (n<2) else m + k*n + sum(a(j,k,m)*a(n-j-1,k,m) for j in (0..n-1))
    [a(n,1,1) for n in (0..40)] # G. C. Greubel, Jul 02 2021

Formula

G.f.: (1 - sqrt(1 - 4*z*(a(0) + (a(1) - a(0)^2)*z + (k+m)*z^2/(1-z) + k*z^2/(1-z)^2)))/(2*z) with a(0) = k = m = 1 and a(1) = 5.
(n+1)*a(n) - (7*n-2)*a(n-1) - (n-11)*a(n-2) + (23*n-70)*a(n-3) - 24*(n-4)*a(n-4) + 8*(n-5)*a(n-5) = 0. - R. J. Mathar, Feb 29 2016
From G. C. Greubel, Jul 02 2021: (Start)
a(n) = m + k*n + Sum_{j=0..n-1} a(j)*a(n-j-1) with a(0) = m = k = 1 and a(1) = 5.
G.f.: (1-x -sqrt(1 -6*x -7*x^2 +16*x^3 -8*x^4))/(2*x*(1-x)). (End)