A176665 Triangle of polynomial coefficients of p(x,n) = Sum_{k=0..n} (k + 1)^n * k! * binomial(x, k), read by rows.
1, 1, 2, 1, -5, 9, 1, 109, -165, 64, 1, -3303, 6188, -3494, 625, 1, 169711, -357254, 254434, -74635, 7776, 1, -13084359, 30063342, -24927719, 9549230, -1718079, 117649, 1, 1417404703, -3486909736, 3229823067, -1474126800, 354928391, -43216649, 2097152
Offset: 0
Examples
Triangle begins as: 1; 1, 2; 1, -5, 9; 1, 109, -165, 64; 1, -3303, 6188, -3494, 625; 1, 169711, -357254, 254434, -74635, 7776; 1, -13084359, 30063342, -24927719, 9549230, -1718079, 117649;
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Crossrefs
Cf. A083318.
Programs
-
Mathematica
(* First program *) p[x_, n_]:= Sum[(k+1)^n*k!*Binomial[x, k], {k, 0, n}]; Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}]//Flatten (* Second program *) f[n_]:= CoefficientList[Sum[(k+1)^n*Product[x-j, {j,0,k-1}], {k,0,n}], x]; Table[f[n], {n, 0, 10}] (* G. C. Greubel, Feb 07 2021 *)
-
Sage
def p(n, x): return sum( (k+1)^n*factorial(k)*binomial(x, k) for k in (0..n)) flatten([[( p(n, x) ).series(x, n+1).list()[k] for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 07 2021
Formula
Let p(x,n) = Sum_{k=0..n} (k + 1)^n * k! * binomial(x, k) then the number triangle is given by T(n, m) = coefficients( p(x,n) ).
Extensions
Edited by G. C. Greubel, Feb 07 2021
Comments