A176666 A triangle of polynomial coefficients:p(x,n)=Sum[(2*k + 1)^n*k!*Binomial[x, k], {k, 0, n}].
1, 1, 3, 1, -16, 25, 1, 588, -904, 343, 1, -35108, 65593, -36965, 6561, 1, 3541662, -7450307, 5299298, -1551461, 161051, 1, -539667860, 1239476145, -1027098387, 393094596, -70630574, 4826809, 1, 115929493398, -285126982237, 264011385389
Offset: 0
Examples
{1}, {1, 3}, {1, -16, 25}, {1, 588, -904, 343}, {1, -35108, 65593, -36965, 6561}, {1, 3541662, -7450307, 5299298, -1551461, 161051}, { 1, -539667860, 1239476145, -1027098387, 393094596, -70630574, 4826809}, {1, 115929493398, -285126982237, 264011385389, -120438105421, 28978650041, -3525298358, 170859375}, {1, -33405526460804, 86851508060145, -87619801707127, 45402414077950, -13236000326919, 2193188923598, -192758317723, 6975757441}, {1, 12439546100725062, -33876724511327305, 36619991865553925, -20936375400104384, 7018154767854372, -1426322806941012, 172905465804793, -11498169243547, 322687697779}, {1, -5815351979718349460, 16476663041157314889, -18861838035155184791, 11671607490973992658, -4358525114199083475, 1028212770824559839, -154333184246062051, 14292794059654483, -744463577761244, 16679880978201}
Crossrefs
Cf. A103457
Programs
-
Mathematica
Clear[p, x, n] p[x_, n_] := Sum[(2*k + 1)^n*k!*Binomial[x, k], {k, 0, n}]; Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}]; Flatten[%]
Formula
p(x,n)=Sum[(2*k + 1)^n*k!*Binomial[x, k], {k, 0, n}];
t(n,m)=coefficients(p(x,n))
Comments