cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176668 Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial sum_{k=0..infinity} (2*k+1)^n*binomial(x,k) / 2^x.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 8, 21, 10, 1, 1, 5, 45, 55, 15, 1, 1, 7, 30, 185, 120, 21, 1, 1, 70, -77, 245, 595, 231, 28, 1, 1, 72, 490, -756, 1435, 1596, 406, 36, 1, 1, -1311, 3762, -546, -2625, 6111, 3738, 666, 45, 1, 1, -1309, -11325, 35130, -20895, -1743, 20685
Offset: 0

Views

Author

Roger L. Bagula, Apr 23 2010

Keywords

Comments

Row sums are A007051(n).
Exponential Riordan array [exp(x), log((exp(2x)+1)/2)]=[exp(x),x+log(cosh(x))]. - Paul Barry Jan 10 2011

Examples

			1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 8, 21, 10, 1;
1, 5, 45, 55, 15, 1;
1, 7, 30, 185, 120, 21, 1;
1, 70, -77, 245, 595, 231, 28, 1;
1, 72, 490, -756, 1435, 1596, 406, 36, 1;
1, -1311, 3762, -546, -2625, 6111, 3738, 666, 45, 1;
1, -1309, -11325, 35130, -20895, -1743, 20685, 7890, 1035, 55, 1;
Production matrix begins
1, 1,
0, 2, 1,
0, -1, 3, 1,
0, 1, -3, 4, 1,
0, -1, 4, -6, 5, 1,
0, 1, -5, 10, -10, 6, 1,
0, -1, 6, -15, 20, -15, 7, 1,
0, 1, -7, 21, -35, 35, -21, 8, 1,
0, -1, 8, -28, 56, -70, 56, -28, 9, 1
- _Paul Barry_ Jan 10 2011
		

Crossrefs

Programs

  • Maple
    A176668 := proc(n,k) sum( (2*l+1)^n*binomial(x,l),l=0..infinity) ; simplify(%/2^x) ; coeftayl(%,x=0,k) ; end proc: # R. J. Mathar, Jan 15 2011
  • Mathematica
    p[x_, n_] = Sum[(2*k + 1)^n*Binomial[x, k], {k, 0, Infinity}]/2^x ;
    Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
    Flatten[%]

Formula

From Peter Bala, Mar 16 2012. (Start)
The row polynomials of this triangle may be obtained by applying the operator x*d/dx repeatedly to x*(1+x^2)^n = sum {k = 0..n} binomial(n,k)*x^(2*k+1) and evaluating the result at x = 1. The first few results are:
sum {k = 0..n} (2*k+1)*binomial(n,k) = (n+1)*2^n
sum {k = 0..n} (2*k+1)^2*binomial(n,k) = (n^2+3*n^+1)*2^n
sum {k = 0..n} (2*k+1)^3*binomial(n,k) = (n^3+6*n^2+6*n+1)*2^n.
Compare with A209849. (End)