A176687 Numbers k such that k^2-1 is the product of 4 distinct primes.
34, 56, 86, 92, 94, 104, 106, 142, 144, 160, 164, 166, 184, 186, 194, 196, 202, 204, 214, 216, 218, 220, 230, 232, 236, 248, 256, 266, 272, 284, 300, 302, 304, 320, 322, 328, 340, 346, 358, 384, 392, 394, 398, 400, 412, 414, 416, 430, 434, 446, 452, 456, 464
Offset: 1
Keywords
Examples
34 is in the sequence, because 34^2 - 1 = 1155 = 3 * 5 * 7 * 11, so it's a product of 4 distinct primes.
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[7! ],Last/@FactorInteger[ #^2-1]=={1,1,1,1}&] dp4Q[n_]:=Module[{c=n^2-1},PrimeNu[c]==PrimeOmega[c]==4]; Select[Range[ 500], dp4Q] (* Harvey P. Dale, Dec 31 2013 *)