cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A107595 G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^(n^2).

Original entry on oeis.org

1, 1, 2, 7, 31, 158, 884, 5292, 33385, 219797, 1500449, 10573815, 76688602, 571232869, 4363912280, 34161879247, 273906591562, 2248935278231, 18909284838057, 162842178607893, 1436660527685476, 12988076148036405, 120345643023918566, 1143054910071718088, 11129160383826078389
Offset: 0

Views

Author

Paul D. Hanna, May 17 2005

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 31*x^4 + 158*x^5 + 884*x^6 + 5292*x^7 +...
Let A = g.f. A(x) then
A = 1 + x*A^1 + x^2*A^4 + x^3*A^9 + x^4*A^16 + x^5*A^25 ...
= 1 + x*(1 + x + 2*x^2 + 7*x^3 + 31*x^4 + 158*x^5 + 884*x^6 +...)
+ x^2*(1 + 4*x + 14*x^2 + 56*x^3 + 257*x^4 + 1312*x^5 +...)
+ x^3*(1 + 9*x + 54*x^2 + 291*x^3 + 1557*x^4 + 8568*x^5 +..)
+ x^4*(1 + 16*x + 152*x^2 + 1152*x^3 + 7836*x^4 +...)
+ x^5*(1 + 25*x + 350*x^2 + 3675*x^3 + 32625*x^4 +...)
+ x^6*(1 + 36*x + 702*x^2 + 9912*x^3 + 114201*x^4 +...) +...
= 1 + x + 2*x^2 + 7*x^3 + 31*x^4 + 158*x^5 + 884*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    m = 25; A[_] = 0;
    Do[A[x_] = 1 + Sum[x^k A[x]^(k^2) + O[x]^j, {k, 1, j}], {j, m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 05 2019 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(k=1,n,A=1+sum(j=1,n,x^j*A^(j^2)+x*O(x^n)));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = (1/x)*Series_Reversion(x/F(x)) and thus A(x) = F(x*A(x)) where F(x) is the g.f. of A107594.
G.f. A(x) = x/Series_Reversion(x*G(x)) and thus A(x) = G(x/A(x)) where G(x) is the g.f. of A107596.
From Paul D. Hanna, Apr 23 2010: (Start)
Let A = g.f. A(x), then A satisfies the continued fraction:
A = 1/(1 - A*x/(1 - (A^3-A)*x/(1 - A^5*x/(1 - (A^7-A^3)*x/(1 - A^9*x/(1- (A^11-A^5)*x/(1 - A^13*x/(1 - (A^15-A^7)*x/(1 - ...)))))))))
due to an identity of a partial elliptic theta function. (End)
From Paul D. Hanna, May 04 2010: (Start)
Let A = g.f. A(x), then A satisfies:
A = Sum_{n>=0} x^n*A^n * Product_{k=1..n} (1 - x*A^(4k-3)) / (1 - x*A^(4k-1))
due to a q-series identity. (End)

A176720 G.f. satisfies: A(x) = 1 + Sum_{n>=0} 2*x^(n^2)*A(x)^n.

Original entry on oeis.org

1, 2, 4, 8, 18, 44, 112, 288, 744, 1938, 5104, 13584, 36456, 98468, 267376, 729488, 1999074, 5500412, 15189636, 42084952, 116949848, 325878288, 910333152, 2548892864, 7152113760, 20108587038, 56641227416, 159820928328
Offset: 0

Views

Author

Paul D. Hanna, Apr 25 2010

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 8*x^3 + 18*x^4 + 44*x^5 + 112*x^6 +...
A(x) = 1 + 2*x*A(x) + 2*x^4*A(x)^2 + 2*x^9*A(x)^3 + 2*x^16*A(x)^4 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,2*(A+x*O(x^n))^m*x^(m^2)));polcoeff(A,n)}

Extensions

Edited by Paul D. Hanna, Apr 27 2010

A218294 G.f. satisfies: A(x) = 1 + Sum_{n>=1} 2*x^n * A(x)^(2*n^2).

Original entry on oeis.org

1, 2, 10, 82, 866, 10482, 138698, 1957346, 29024642, 448005922, 7153738058, 117681081522, 1988787934818, 34465473701522, 611806834645642, 11118408274591938, 206835953956603394, 3939803761941599042, 76880490874588995978, 1538019374456939130386
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2012

Keywords

Comments

Given g.f. A(x), then Q = A(-x^2) satisfies:
Q = (1-x)*Sum_{n>=0} x^n*Product_{k=1..n} (1 - x*Q^(2*k))/(1 + x*Q^(2*k))
due to a q-series expansion for the Jacobi theta_4 function.

Examples

			G.f.: A(x) = 1 + 2*x + 10*x^2 + 82*x^3 + 866*x^4 + 10482*x^5 + 138698*x^6 +...
where
A(x) = 1 + 2*x*A(x)^2 + 2*x^2*A(x)^8 + 2*x^3*A(x)^18 + 2*x^4*A(x)^32 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, 2*x^m*(A+x*O(x^n))^(2*m^2))); polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))

A218295 G.f. satisfies: A(x) = 1 + Sum_{n>=1} 2*x^n * A(x)^(3*n^2).

Original entry on oeis.org

1, 2, 14, 158, 2274, 37410, 670670, 12786622, 255519106, 5302716866, 113586849614, 2501007496542, 56446396937186, 1303401799574242, 30756416720161422, 741216834445478270, 18240706372460480002, 458484823574294544770, 11776969626284389958030
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2012

Keywords

Comments

Given g.f. A(x), then Q = A(-x^2) satisfies:
Q = (1-x)*Sum_{n>=0} x^n*Product_{k=1..n} (1 - x*Q^(3*k))/(1 + x*Q^(3*k))
due to a q-series expansion for the Jacobi theta_4 function.

Examples

			G.f.: A(x) = 1 + 2*x + 14*x^2 + 158*x^3 + 2274*x^4 + 37410*x^5 +...
where
A(x) = 1 + 2*x*A(x)^3 + 2*x^2*A(x)^12 + 2*x^3*A(x)^27 + 2*x^4*A(x)^48 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, 2*x^m*(A+x*O(x^n))^(3*m^2))); polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))
Showing 1-4 of 4 results.