A157134
G.f. satisfies: A(x) = Sum_{n>=0} x^(n^2) * A(x)^n.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 7, 11, 18, 33, 63, 117, 211, 383, 713, 1348, 2547, 4793, 9039, 17165, 32785, 62761, 120243, 230768, 444119, 857015, 1656931, 3207990, 6219994, 12079544, 23496417, 45767352, 89256038, 174269488, 340646238, 666604642
Offset: 0
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 11*x^7 +...
A(x)^2 = 1 + 2*x + 3*x^2 + 4*x^3 + 7*x^4 + 14*x^5 + 27*x^6 +...
A(x)^3 = 1 + 3*x + 6*x^2 + 10*x^3 + 18*x^4 + 36*x^5 + 73*x^6 +...
A(x)^4 = 1 + 4*x + 10*x^2 + 20*x^3 + 39*x^4 + 80*x^5 + 168*x^6 +...
where
A(x) = 1 + x*A(x) + x^4*A(x)^2 + x^9*A(x)^3 + x^16*A(x)^4 +...
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,(A=sum(m=0,sqrtint(n),x^(m^2)*A^m)));polcoeff(A,n)}
A176719
G.f. satisfies: A(x) = 1 + Sum_{n>=1} 2*x^n * A(x)^(n^2).
Original entry on oeis.org
1, 2, 6, 30, 194, 1442, 11782, 103102, 951554, 9173186, 91780614, 948985822, 10110931650, 110794764642, 1247186300934, 14412811665278, 170949340705794, 2081185257723778, 26012832364535814, 333929563132811678, 4404347475363755714, 59705917899701420834, 832080588205468939782
Offset: 0
G.f.: A(x) = 1 + 2*x + 6*x^2 + 30*x^3 + 194*x^4 + 1442*x^5 +...
A(x) = 1 + 2*x*A(x) + 2*x^2*A(x)^4 + 2*x^3*A(x)^9 + 2*x^4*A(x)^16 + ...
Contribution from _Paul D. Hanna_, May 11 2010: (Start)
Given g.f. A(x), then Q = A(-x^2) satisfies the q-series:
Q/(1-x) = 1 + x*(xQ;Q)_1/(-xQ;Q)_1 + x^2*(xQ;Q)_2/(-xQ;Q)_2 +...
where the q-Pochhammer symbol (x;q)_n = Product_{k=0..n-1} (1-x*q^k). (End)
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,2*x^m*(A+x*O(x^n))^(m^2)));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A191803
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(5*n^2).
Original entry on oeis.org
1, 1, 6, 61, 791, 11701, 188462, 3225915, 57840755, 1076423857, 20666351126, 407645638428, 8237858879315, 170229866493435, 3592746391559133, 77393340642273491, 1701286171473636404, 38169860244429063080
Offset: 0
G.f.: A(x) = 1 + x + 6*x^2 + 61*x^3 + 791*x^4 + 11701*x^5 + 188462*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x)^5 + x^2*A(x)^20 + x^3*A(x)^45 + x^4*A(x)^80 +...+ x^n*A(x)^(5*n^2) +...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^(5*m^2)));polcoeff(A,n)}
A191800
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(2*n^2).
Original entry on oeis.org
1, 1, 3, 16, 109, 851, 7275, 66393, 637239, 6371848, 65961782, 703953599, 7722738071, 86924392498, 1002603956938, 11842465020207, 143208130730229, 1773099186411938, 22483740028949531, 292129222113885503, 3891268435685371911
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 109*x^4 + 851*x^5 + 7275*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x)^2 + x^2*A(x)^8 + x^3*A(x)^18 + x^4*A(x)^32 +...+ x^n*A(x)^(2*n^2) +...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^(2*m^2)));polcoeff(A,n)}
A191801
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(3*n^2).
Original entry on oeis.org
1, 1, 4, 28, 251, 2573, 28813, 343833, 4308210, 56154805, 756731761, 10499096630, 149551069156, 2182935186698, 32613646656198, 498420592612153, 7790219357236805, 124545937719356873, 2037614647316548891, 34134979366157116560
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 251*x^4 + 2573*x^5 + 28813*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x)^3 + x^2*A(x)^12 + x^3*A(x)^27 + x^4*A(x)^48 +...+ x^n*A(x)^(3*n^2) +...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^(3*m^2)));polcoeff(A,n)}
A191802
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(4*n^2).
Original entry on oeis.org
1, 1, 5, 43, 473, 5942, 81393, 1186342, 18132473, 287948903, 4722077279, 79636530163, 1377304530677, 24382127678100, 441294262119031, 8160739579770316, 154169018332135841, 2975846752734820345, 58718914018159811186
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 43*x^3 + 473*x^4 + 5942*x^5 + 81393*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x)^4 + x^2*A(x)^16 + x^3*A(x)^36 + x^4*A(x)^64 +...+ x^n*A(x)^(4*n^2) +...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^(4*m^2)));polcoeff(A,n)}
A191804
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(6*n^2).
Original entry on oeis.org
1, 1, 7, 82, 1221, 20718, 382315, 7489683, 153551487, 3264643144, 71545452946, 1609541143713, 37065029428453, 872037022019930, 20935244357544798, 512498682139660135, 12790021472251565047, 325439165493879484025
Offset: 0
G.f.: A(x) = 1 + x + 7*x^2 + 82*x^3 + 1221*x^4 + 20718*x^5 + 382315*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x)^6 + x^2*A(x)^24 + x^3*A(x)^54 + x^4*A(x)^96 +...+ x^n*A(x)^(6*n^2) +...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^(6*m^2)));polcoeff(A,n)}
A301929
G.f. A(x) satisfies: x = Sum_{n>=1} (1+x)^(n^2) * x^n / A(x)^n.
Original entry on oeis.org
1, 2, 3, 5, 12, 37, 138, 595, 2843, 14844, 83212, 496473, 3128584, 20707672, 143342216, 1034075244, 7752274237, 60251286521, 484483164365, 4023459643530, 34455215830001, 303839675537827, 2755675307738286, 25675275100067189, 245502965520844801, 2406797239543382867, 24170220195274548727, 248441483165679473094, 2611787614440970964621
Offset: 0
G.f.: A(x) = 1 + 2*x + 3*x^2 + 5*x^3 + 12*x^4 + 37*x^5 + 138*x^6 + 595*x^7 + 2843*x^8 + 14844*x^9 + 83212*x^10 + 496473*x^11 + 3128584*x^12 + ...
such that
x = (1+x)*x/A(x) + (1+x)^4*x^2/A(x)^2 + (1+x)^9*x^3/A(x)^3 + (1+x)^16*x^4/A(x)^4 + (1+x)^25*x^5/A(x)^5 + (1+x)^36*x^6/A(x)^6 + (1+x)^49*x^7/A(x)^7 + ...
-
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = Vec(sum(n=0, #A, ((1+x)^n +x*O(x^#A))^n * x^n/Ser(A)^n ) )[#A+1] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A191805
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(n^3).
Original entry on oeis.org
1, 1, 2, 11, 83, 809, 9503, 130107, 2056768, 37137351, 761543233, 17637050418, 458225405825, 13265643258608, 424971569670808, 14963974979730138, 575619170223815326, 24056794697473352763, 1087014831018615150024
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 83*x^4 + 809*x^5 + 9503*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x) + x^2*A(x)^8 + x^3*A(x)^27 + x^4*A(x)^64 + x^5*A(x)^125 + x^6*A(x)^216 +...+ x^n*A(x)^(n^3) +...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^(m^3)));polcoeff(A,n)}
A191806
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(n^4).
Original entry on oeis.org
1, 1, 2, 19, 253, 5256, 153121, 5793349, 292530822, 18658710139, 1476004466687, 143228682526672, 16603062548806759, 2272210780577578355, 363396388117576899042, 67028665570181029621005, 14142153576677394736652147
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 19*x^3 + 253*x^4 + 5256*x^5 + 153121*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x) + x^2*A(x)^16 + x^3*A(x)^81 + x^4*A(x)^256 + x^5*A(x)^625 + x^6*A(x)^1296 +...+ x^n*A(x)^(n^4) +...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^(m^4)));polcoeff(A,n)}
Showing 1-10 of 16 results.