cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176739 Expansion of 1/(1-2*x^2-4*x^3). (2,4)-Padovan sequence.

Original entry on oeis.org

1, 0, 2, 4, 4, 16, 24, 48, 112, 192, 416, 832, 1600, 3328, 6528, 13056, 26368, 52224, 104960, 209920, 418816, 839680, 1677312, 3354624, 6713344, 13418496, 26845184, 53690368, 107364352, 214761472, 429490176, 858980352, 1718026240, 3435921408, 6871973888
Offset: 0

Views

Author

Wolfdieter Lang, Jul 14 2010

Keywords

Comments

See A000931 (Padovan), and the W. Lang link given there for a combinatorial interpretation and an explicit form.
a(n)/2^n equals the probability that n will occur as a partial sum in a randomly-generated infinite sequence of 2's and 3's. The limiting ratio is 2/5. - Bob Selcoe, Jul 12 2013

Examples

			Combinatorics for (A,B)=(2,4) Padovan sequence with weighted (3,2)-Morse type code (see the W. Lang link under A000931): n=5, - -- and -- -, with weights 2^1*4^1 and 4^1*2^1, respectively, adding to 2*2*4=16=a(5).
		

Crossrefs

Programs

  • Maple
    seq(2^(n+1)/5 + Re((3-I)*(-1-I)^n)/5, n=0..100); # Robert Israel, Aug 26 2014
  • Mathematica
    CoefficientList[Series[1/(1 - 2*x^2 - 4*x^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 26 2014 *)

Formula

O.g.f.: 1/((1+2*x+2*x^2)*(1-2*x)) = ((3+2*x)/(1+2*x+2*x^2) + 2/(1-2*x))/5.
a(n) = (3*b(n) + 2*b(n-1) + 2^(n+1))/5, with b(n):=A108520(n), and b(-1)=0.
a(n) = 2*a(n-2) + 4*a(n-3). - Bob Selcoe, Aug 26 2014
a(n) = 2^(n+1)/5 + Re((3-i)*(-1-i)^n)/5. - Robert Israel, Aug 26 2014
5*a(n) = 2^(n+1) -A078069(n+1). - R. J. Mathar, May 14 2024