A176739 Expansion of 1/(1-2*x^2-4*x^3). (2,4)-Padovan sequence.
1, 0, 2, 4, 4, 16, 24, 48, 112, 192, 416, 832, 1600, 3328, 6528, 13056, 26368, 52224, 104960, 209920, 418816, 839680, 1677312, 3354624, 6713344, 13418496, 26845184, 53690368, 107364352, 214761472, 429490176, 858980352, 1718026240, 3435921408, 6871973888
Offset: 0
Examples
Combinatorics for (A,B)=(2,4) Padovan sequence with weighted (3,2)-Morse type code (see the W. Lang link under A000931): n=5, - -- and -- -, with weights 2^1*4^1 and 4^1*2^1, respectively, adding to 2*2*4=16=a(5).
Links
- Index entries for linear recurrences with constant coefficients, signature (0,2,4).
Programs
-
Maple
seq(2^(n+1)/5 + Re((3-I)*(-1-I)^n)/5, n=0..100); # Robert Israel, Aug 26 2014
-
Mathematica
CoefficientList[Series[1/(1 - 2*x^2 - 4*x^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 26 2014 *)
Formula
O.g.f.: 1/((1+2*x+2*x^2)*(1-2*x)) = ((3+2*x)/(1+2*x+2*x^2) + 2/(1-2*x))/5.
a(n) = (3*b(n) + 2*b(n-1) + 2^(n+1))/5, with b(n):=A108520(n), and b(-1)=0.
a(n) = 2*a(n-2) + 4*a(n-3). - Bob Selcoe, Aug 26 2014
a(n) = 2^(n+1)/5 + Re((3-i)*(-1-i)^n)/5. - Robert Israel, Aug 26 2014
5*a(n) = 2^(n+1) -A078069(n+1). - R. J. Mathar, May 14 2024
Comments