cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176759 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=0, k=1 and l=-1.

Original entry on oeis.org

1, 0, 1, 4, 11, 27, 67, 178, 505, 1489, 4473, 13593, 41749, 129579, 406021, 1282464, 4077987, 13041655, 41919347, 135352451, 438827223, 1427986281, 4662359911, 15268900019, 50143755435, 165095296125, 544847069819, 1802020334105
Offset: 0

Views

Author

Richard Choulet, Apr 25 2010

Keywords

Examples

			a(2)=2*1*0+2-1=1. a(3)=2*1*1+2+0^2+1-1=4. a(4)=2*1*4+2+2*0*1+2-1=11.
		

Crossrefs

Cf. A176757.

Programs

  • Maple
    l:=-1: : k := 1 : m:=0:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
    taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);

Formula

G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=-1).
Conjecture: (n+1)*a(n) +(-7*n+2)*a(n-1) +(19*n-29)*a(n-2) +(-29*n+82)*a(n-3) +4*(5*n-19)*a(n-4) +4*(-n+5)*a(n-5)=0. - R. J. Mathar, Feb 18 2016