cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A176826 a(n+1) = Sum_{p=0..n} (a(p)*a(n-p)+k)+l for n>=1, where a(0)=1, a(1)=1, k=1 and l=-1.

Original entry on oeis.org

1, 1, 3, 9, 27, 85, 283, 985, 3539, 13013, 48707, 184921, 710347, 2755669, 10780139, 42477977, 168439619, 671641685, 2691362195, 10832277401, 43771088315, 177504638933, 722178443963, 2946919157081, 12057932335283, 49461067106261, 203355663470307, 837870162610137
Offset: 0

Views

Author

Richard Choulet, Apr 27 2010

Keywords

Examples

			a(2)=2*1*1+2-1=3. a(3)=2*1*3+2+1^1+1-1=9. a(4)=2*1*9+2+2*1*3+2-1=27.
		

Crossrefs

Programs

  • Maple
    l:=-1: : k := 1 : m:=1:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
    taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
  • Maxima
    a(n):=sum((binomial(2*k,k)*sum(binomial(k+1,i)*binomial(n-k-1,n-k-2*i),i,0,(n-k)/2))/(k+1),k,0,n); /* Vladimir Kruchinin, May 09 2018 */

Formula

G.f.: (1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=-1).
Conjecture: (n+1)*a(n) +(-7*n+2)*a(n-1) +3*(5*n-7)*a(n-2) +(-17*n+46)*a(n-3) +4*(2*n-7)*a(n-4)=0. - R. J. Mathar, Feb 18 2016
a(n) = Sum_{k=0..n} C(k)*Sum_{i=0..(n-k)/2} binomial(k+1,i)*binomial(n-k-1,n-k-2*i), where C(k) is the k-th Catalan number (A000108). - Vladimir Kruchinin, May 09 2018
a(n) ~ sqrt(3*((32 - 13*sqrt(2))^(1/3) + (32 + 13*sqrt(2))^(1/3))) * ((2 + (sqrt(2) - 1)^(2/3) + (1 + sqrt(2))^(2/3))^n / (2^(11/6) * sqrt(Pi) * n^(3/2))). - Vaclav Kotesovec, May 11 2018

Extensions

More terms from Vaclav Kotesovec, May 11 2018
Showing 1-1 of 1 results.