A176794 Triangle read by rows: T(n, k) = 2^n*(q^k - 1)*(q^(n - k) - 1) + 1, where q = 3.
1, 1, 1, 1, 17, 1, 1, 129, 129, 1, 1, 833, 1025, 833, 1, 1, 5121, 6657, 6657, 5121, 1, 1, 30977, 40961, 43265, 40961, 30977, 1, 1, 186369, 247809, 266241, 266241, 247809, 186369, 1, 1, 1119233, 1490945, 1610753, 1638401, 1610753, 1490945, 1119233, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 17, 1; 1, 129, 129, 1; 1, 833, 1025, 833, 1; 1, 5121, 6657, 6657, 5121, 1; 1, 30977, 40961, 43265, 40961, 30977, 1; 1, 186369, 247809, 266241, 266241, 247809, 186369, 1; 1, 1119233, 1490945, 1610753, 1638401, 1610753, 1490945, 1119233, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
f:= func< n,k,q | 1 + (q^k-1)*(q^(n-k)-1)*2^n >; A176794:= func< n,k | f(n,k,3) >; [A176794(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Oct 03 2024
-
Mathematica
T[n_, k_, q_] := 2^n*(q^k - 1)*(q^(n - k) - 1) + 1; Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten
-
SageMath
def f(n, k, q): return 1 + (q^k -1)*(q^(n-k) -1)*2^n def A176794(n,k): return f(n,k,3) flatten([[A176794(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Oct 03 2024
Formula
T(n, k) = 1 - (f(n+1, 2*k+1, q) - f(n+1, 1, q)) - (f(n+1, 2*n-2*k+1, q) - f(n+1, 2*n+1, q)), where f(n, k, q) = 2^(n-1) * q^((k-1)/2), and q = 3.
From G. C. Greubel, Oct 02 2024: (Start)
T(n, k) = 2^n*(3^k - 1)*(3^(n-k) - 1) + 1.
T(2*n, n) = 1 + 4^n*(3^n - 1)^2 = 1 + 16*A144843(n).
Sum_{k=0..n} T(n, k) = 2^n*(n + 2 + (n-2)*3^n) + (n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/4)*(1 + (-1)^n)*(2 + 2^n - 6^n). (End)
Extensions
Edited by G. C. Greubel, Oct 03 2024