cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176795 Triangle read by rows: T(n, k) = 2^n*(q^k - 1)*(q^(n - k) - 1) + 1, where q = 4.

Original entry on oeis.org

1, 1, 1, 1, 37, 1, 1, 361, 361, 1, 1, 3025, 3601, 3025, 1, 1, 24481, 30241, 30241, 24481, 1, 1, 196417, 244801, 254017, 244801, 196417, 1, 1, 1572481, 1964161, 2056321, 2056321, 1964161, 1572481, 1, 1, 12582145, 15724801, 16498945, 16646401, 16498945, 15724801, 12582145, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 26 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,        1;
  1,       37,        1;
  1,      361,      361,        1;
  1,     3025,     3601,     3025,        1;
  1,    24481,    30241,    30241,    24481,        1;
  1,   196417,   244801,   254017,   244801,   196417,        1;
  1,  1572481,  1964161,  2056321,  2056321,  1964161,  1572481,        1;
  1, 12582145, 15724801, 16498945, 16646401, 16498945, 15724801, 12582145, 1;
		

Crossrefs

Cf. A000012 (q=1), A176793 (q=2), A176794 (q=3), this sequence (q=4).

Programs

  • Magma
    f:= func< n,k,q | 1 + (q^k-1)*(q^(n-k)-1)*2^n >;
    A176795:= func< n,k | f(n,k,4) >;
    [A176795(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Oct 03 2024
    
  • Mathematica
    T[n_, k_, q_] := 2^n*(q^k - 1)*(q^(n - k) - 1) + 1;Table[T[n, k, 4], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def f(n, k, q): return 1 + (q^k -1)*(q^(n-k) -1)*2^n
    def A176795(n,k): return f(n,k,4)
    flatten([[A176795(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Oct 03 2024

Formula

T(n, k) = 1 - (f(n+1, 2*k+1, q) - f(n+1, 1, q)) - (f(n+1, 2*n-2*k+1, q) - f(n+1, 2*n+1, q)), where f(n, k, q) = 2^(n-1) * q^((k-1)/2), and q = 4.
From G. C. Greubel, Oct 03 2024: (Start)
T(n, k) = 2^n*(4^k - 1)*(4^(n-k) - 1) + 1.
T(2*n, n) = 1 + 4^n*(4^n - 1)^2.
Sum_{k=0..n} T(n, k) = (1/3)*((3*n + 5)*2^n + (3*n - 5)*8^n) + (n + 1).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/10)*(1 + (-1)^n)*(5 + 3*2^n - 3*8^n). (End)

Extensions

Edited by G. C. Greubel, Oct 04 2024