A176801 a(n) is the smallest natural number m such that product of arithmetic mean of the divisors of n and arithmetic mean of the divisors of m is an integer.
1, 3, 1, 5, 1, 1, 1, 7, 5, 3, 1, 2, 1, 1, 1, 19, 1, 3, 1, 1, 1, 1, 1, 3, 5, 3, 1, 2, 1, 1, 1, 3, 1, 3, 1, 17, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 19, 1, 3, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 13, 1, 1, 1, 1, 1, 1, 1, 7, 1, 3, 2, 2, 1, 1, 1, 19, 19, 3, 1, 2, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 17, 1, 1, 1, 7, 1
Offset: 1
Keywords
Examples
For n = 12; b(12) = 14/3, a(n) = 2 because b(2) = 3/2; 14/3 * 3/2 = 7 (integer).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
PARI
A176801(n) = { my(am=(sigma(n)/numdiv(n))); for(i=1, oo, if(1==denominator(am*(sigma(i)/numdiv(i))), return(i))); }; \\ Antti Karttunen, Dec 24 2018
Extensions
More terms from Antti Karttunen, Dec 24 2018
Comments