cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176801 a(n) is the smallest natural number m such that product of arithmetic mean of the divisors of n and arithmetic mean of the divisors of m is an integer.

Original entry on oeis.org

1, 3, 1, 5, 1, 1, 1, 7, 5, 3, 1, 2, 1, 1, 1, 19, 1, 3, 1, 1, 1, 1, 1, 3, 5, 3, 1, 2, 1, 1, 1, 3, 1, 3, 1, 17, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 19, 1, 3, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 13, 1, 1, 1, 1, 1, 1, 1, 7, 1, 3, 2, 2, 1, 1, 1, 19, 19, 3, 1, 2, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 17, 1, 1, 1, 7, 1
Offset: 1

Views

Author

Jaroslav Krizek, Apr 26 2010

Keywords

Comments

a(n) = 1 for infinitely many n.
a(n) = 1 for numbers from A003601: a(A003601(n)) = 1.
a(n) = 1 iff A057021(n) = 1.
Not all terms are 1's or primes. For example, a(128) = 21. - Antti Karttunen, Dec 24 2018

Examples

			For n = 12; b(12) = 14/3, a(n) = 2 because b(2) = 3/2; 14/3 * 3/2 = 7 (integer).
		

Crossrefs

Cf. A000005/A000203 or A057020/A057021: arithmetic mean.

Programs

  • PARI
    A176801(n) = { my(am=(sigma(n)/numdiv(n))); for(i=1, oo, if(1==denominator(am*(sigma(i)/numdiv(i))), return(i))); }; \\ Antti Karttunen, Dec 24 2018

Extensions

More terms from Antti Karttunen, Dec 24 2018