A176861 Triangle T(n, k) = (-1)^n*(k+1)!*(n-k+1)!*binomial(n+2, k+2)*binomial(n+2, n-k+2) read by rows.
1, -6, -6, 36, 64, 36, -240, -600, -600, -240, 1800, 5760, 8100, 5760, 1800, -15120, -58800, -105840, -105840, -58800, -15120, 141120, 645120, 1411200, 1806336, 1411200, 645120, 141120, -1451520, -7620480, -19595520, -30481920, -30481920, -19595520, -7620480, -1451520
Offset: 0
Examples
Triangle begins as: 1; -6, -6; 36, 64, 36; -240, -600, -600, -240; 1800, 5760, 8100, 5760, 1800; -15120, -58800, -105840, -105840, -58800, -15120; 141120, 645120, 1411200, 1806336, 1411200, 645120, 141120;
References
- F. S. Roberts, Applied Combinatorics, Prentice-Hall, 1984, p. 576 and 270.
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Crossrefs
Cf. A132159.
Programs
-
Magma
[(-1)^n*Factorial(k+1)*Factorial(n-k+1)*Binomial(n+2, k+2)*Binomial(n+2, n-k+2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 07 2021
-
Mathematica
T[n_, k_]:= (-1)^n*(k+1)!*(n-k+1)!*Binomial[n+2, k+2]*Binomial[n+2, n-k+2]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
-
Sage
flatten([[(-1)^n*factorial(k+1)*factorial(n-k+1)*binomial(n+2, k+2)*binomial(n+2, n-k+2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 07 2021
Formula
T(n, k) = (-1)^n*(k+1)!*(n-k+1)!*binomial(n+2, k+2)*binomial(n+2, n-k+2).
Extensions
Edited by G. C. Greubel, Feb 07 2021
Comments