cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A176865 Numbers n such that n-LargestCube is prime, (LargestCube <= n).

Original entry on oeis.org

3, 4, 6, 10, 11, 13, 15, 19, 21, 25, 29, 30, 32, 34, 38, 40, 44, 46, 50, 56, 58, 66, 67, 69, 71, 75, 77, 81, 83, 87, 93, 95, 101, 105, 107, 111, 117, 123, 127, 128, 130, 132, 136, 138, 142, 144, 148, 154, 156, 162, 166, 168, 172, 178, 184, 186, 192, 196, 198, 204
Offset: 1

Views

Author

Keywords

Examples

			3-1^3=2, 4-1^3=3, ..., 10-2^3=2, 11-2^3=3, ..., 29-3^3=2, ....
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n-Floor[n^(1/3)]^3;If[PrimeQ[p],AppendTo[lst,n]],{n,6!}];lst
    Select[Range[300],PrimeQ[#-Floor[Surd[#,3]]^3]&] (* Harvey P. Dale, May 31 2017 *)
  • PARI
    is(n)=isprime(n - sqrtnint(n,3)) \\ Charles R Greathouse IV, May 22 2017

A176870 Prime numbers p such that p-LargestCube is prime, (LargestCube <= p).

Original entry on oeis.org

3, 11, 13, 19, 29, 67, 71, 83, 101, 107, 127, 223, 227, 229, 233, 239, 257, 263, 269, 277, 283, 313, 317, 523, 541, 571, 601, 613, 619, 643, 661, 691, 709, 1013, 1019, 1031, 1061, 1097, 1103, 1109, 1151, 1163, 1181, 1193, 1223, 1229, 1277, 1283, 1307, 1733
Offset: 1

Views

Author

Keywords

Comments

3-1^3=2, 11-2^3=3, 13-2^3=5, 29-3^3=2,..

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n-Floor[n^(1/3)]^3;If[PrimeQ[p]&&PrimeQ[n],AppendTo[lst,n]],{n,7!}];lst
    Select[Prime[Range[300]],PrimeQ[#-Floor[Surd[#,3]]^3]&] (* Harvey P. Dale, May 19 2019 *)

A176871 Prime numbers p such that p-q^3 is a prime number, (q is a prime number, q^3=LargestCube, LargestCube <= p).

Original entry on oeis.org

11, 13, 19, 29, 127, 24391, 357913, 571789
Offset: 1

Views

Author

Keywords

Comments

3-1^3=2, 11-2^3=3, 13-2^3=5, 19-2^3=11, 29-3^3=2, 127-5^3=2,..

Crossrefs

Programs

  • Mathematica
    lst={};Do[q=Floor[n^(1/3)];p=n-q^3;If[PrimeQ[p]&&PrimeQ[n]&&PrimeQ[q],AppendTo[lst,n]],{n,2*9!}];lst

A176872 Prime numbers p such that p-LargestSquare is prime and p-LargestCube is also prime, (LargestSquare <= p, LargestCube <= p).

Original entry on oeis.org

3, 11, 19, 67, 71, 83, 107, 227, 263, 269, 613, 619, 1031, 1061, 1163, 1193, 1223, 1307, 1787, 1801, 1811, 1831, 1979, 1997, 2129, 4099, 4127, 4133, 4139, 4157, 4373, 4409, 4463, 4637, 4643, 4703, 5843, 5849, 5879, 5903, 6089, 6101, 6113, 6143, 6163, 6211
Offset: 1

Views

Author

Keywords

Comments

11-3^2=2;11-2^3=3, 19-4^2=3,19-2^3=11,..

Crossrefs

Programs

  • Mathematica
    lst={};Do[p2=n-Floor[Sqrt[n]]^2;p3=n-Floor[n^(1/3)]^3;If[PrimeQ[p2]&&PrimeQ[p3]&&PrimeQ[n],AppendTo[lst,n]],{n,8!}];lst
    plsplcQ[p_]:=AllTrue[{p-Floor[Sqrt[p]]^2,p-Floor[Surd[p,3]]^3},PrimeQ]; Select[ Prime[ Range[1000]],plsplcQ] (* Harvey P. Dale, Jul 03 2022 *)
Showing 1-4 of 4 results.