A176875 Numbers that are the product of two distinct primes a and b, such that a+b are averages of twin prime pairs.
35, 65, 77, 161, 185, 209, 221, 335, 341, 371, 377, 437, 485, 515, 611, 671, 707, 731, 767, 779, 851, 899, 917, 965, 1007, 1067, 1115, 1157, 1211, 1247, 1271, 1337, 1385, 1397, 1529, 1535, 1577, 1631, 1691, 1781, 1817, 1841, 1991, 2117, 2171, 2201, 2285
Offset: 1
Keywords
Examples
35 = 5*7 is a term since 5 + 7 +- 1 are twin primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
l[n_]:=Last/@FactorInteger[n]; f[n_]:=First/@FactorInteger[n]; lst={};Do[If[l[n]=={1,1},a=f[n][[1]];b=f[n][[2]];If[PrimeQ[a+b-1]&&PrimeQ[a+b+1],AppendTo[lst,n]]],{n,0,7!}];lst With[{nn=100},Take[Union[Times@@@Select[Subsets[Prime[Range[nn]],{2}], AllTrue[Total[#]+{1,-1},PrimeQ]&]],nn/2]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 09 2015 *)