A176898 a(n) = binomial(6*n, 3*n)*binomial(3*n, n)/(2*(2*n+1)*binomial(2*n, n)).
5, 231, 14586, 1062347, 84021990, 7012604550, 607892634420, 54200780036595, 4938927219474990, 457909109348466930, 43057935618181929900, 4096531994713828810686, 393617202432246696493436, 38142088615983865845923052, 3723160004902167033863327592
Offset: 1
Examples
For n=2 we have a(2) = binomial(12,6)*binomial(6,2)/(2*(2*2+1)*binomial(4,2)) = 231.
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..450
- Khodabakhsh Hessami Pilehrood and Tatiana Hessami Pilehrood, Jacobi polynomials and congruences involving some higher-order Catalan numbers and binomial coefficients, preprint, arXiv:1504.07944 [math.NT], 2015.
- Khodabakhsh Hessami Pilehrood and Tatiana Hessami Pilehrood, Jacobi Polynomials and Congruences Involving Some Higher-Order Catalan Numbers and Binomial Coefficients, J. Int. Seq. 18 (2015) 15.11.7
- Mark Roger Sepanski, On Divisibility of Convolutions of Central Binomial Coefficients, Electronic Journal of Combinatorics, 21 (1) 2014, #P1.32.
- Chen Wang and Hui-Li Han, Supercongruences involving binomial coefficients and Euler polynomials, arXiv:2407.19882 [math.NT], 2024. See p. 2.
- Zhi-Wei Sun, Products and sums divisible by central binomial coefficients, preprint, arXiv:1004.4623 [math.NT], 2010.
- Zhi-Wei Sun, Open conjectures on congruences, preprint, arXiv:0911.5665 [math.NT], 2009-2011.
- Brian Y. Sun and J. X. Meng, Proof of a Conjecture of Z.-W. Sun on Trigonometric Series, arXiv preprint arXiv:1606.08153 [math.CO], 2016.
- Chen Wang and Hui-Li Han, Supercongruences involving binomial coefficients and Euler polynomials, arXiv:2407.19882 [math.NT], 2024. See p. 2.
- Xiran Zhang and Guo-Shuai Mao, Congruences involving binomial coefficients and Legendre symbol, ResearchGate (2024). See p. 10.
Programs
-
Magma
[Binomial(6*n, 3*n)*Binomial(3*n, n)/(2*(2*n+1)*Binomial(2*n, n)): n in [1..15]]; // Vincenzo Librandi, Dec 02 2015
-
Maple
ogf := eval((1-6*s)/((12*s-1)*(8*s-2)) - 1/2, s=RootOf(x+(3*s-1)*(12*s-1)^2*s*(4*s-1)^2,s)); series(ogf,x=0,30); # Mark van Hoeij, May 06 2013
-
Mathematica
S[n_]:=Binomial[6n,3n]Binomial[3n,n]/(2(2n+1)Binomial[2n,n]) Table[S[n],{n,1,50}]
-
PARI
a(n) = binomial(6*n, 3*n) * binomial(3*n, n) / (2*(2*n+1) * binomial(2*n, n)); \\ Indranil Ghosh, Mar 05 2017
-
Python
import math f=math.factorial def C(n,r): return f(n)/f(r)/f(n-r) def A176898(n): return C(6*n, 3*n) * C(3*n, n) / (2*(2*n+1) * C(2*n, n)) # Indranil Ghosh, Mar 05 2017
Formula
G.f.: (1-6*s)/((12*s-1)*(8*s-2)) - 1/2, where x+(3*s-1)*(12*s-1)^2*s*(4*s-1)^2 = 0. - Mark van Hoeij, May 06 2013
a(n) ~ 2^(2*n-3) * 3^(3*n) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 09 2023
From Peter Bala, Feb 21 2023: (Start)
a(n+1) = 6*(6*n + 1)*(6*n + 5)/((n + 1)*(2*n + 3))*a(n).
a(n) = (2^(2*n-1)) * Product_{1 <= i <= j <= 2*n-1} (2*i + j + 2)/(2*i + j - 1). Cf. A006013. (End)
D-finite with recurrence n*(2*n+1)*a(n) -6*(6*n-1)*(6*n-5)*a(n-1)=0. - R. J. Mathar, Nov 22 2024
a(n) = 2^(4n-1) * binomial(3n-1/2, 2n)/(2n+1). - Akiva Weinberger, Dec 09 2024
a(n) = A078531(2*n)/2. - Akiva Weinberger, Dec 09 2024
Comments