cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176950 G.f.: A(x) = 1 + x/Series_Reversion(eta(x) - 1).

Original entry on oeis.org

1, 1, 2, 6, 19, 64, 223, 799, 2927, 10922, 41382, 158800, 615939, 2410880, 9510650, 37774357, 150929671, 606239784, 2446566976, 9915210221, 40336587662, 164662328192, 674300310836, 2769234827610, 11402791485018, 47067085053193
Offset: 1

Views

Author

Paul D. Hanna, Apr 29 2010

Keywords

Comments

Here eta(q) is the Dedekind eta function without the q^(1/24) factor (A010815).

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 19*x^5 + 64*x^6 +...
eta(x)-1 = -x - x^2 + x^5 + x^7 - x^12 - x^15 + x^22 + x^26 +...
x/(A(x)-1) = -x - x^2 - 2*x^3 - 5*x^4 - 15*x^5 - 49*x^6 - 169*x^7 -... (cf. A176025).
		

Crossrefs

Cf. A176025.

Programs

  • Mathematica
    Rest[CoefficientList[1 + x/InverseSeries[Series[QPochhammer[x] - 1, {x, 0, 30}]], x]] (* Vaclav Kotesovec, Nov 11 2017 *)
  • PARI
    {a(n)=polcoeff(1+x/serreverse(eta(x+x^2*O(x^n))-1),n)}

Formula

G.f. satisfies: eta(x/(A(x)-1)) = 1 + x.
G.f. satisfies: A(eta(x)-1) = 1 + (eta(x)-1)/x.
a(n) ~ c * d^n / n^(3/2), where d = 4.37926411884088478340484205014088510... and c = 0.13031461371242728737549949707031... - Vaclav Kotesovec, Nov 11 2017