A176994 Least odd prime p such that p#*2^n-1 is prime, with p# the primorial A034386(p).
3, 3, 3, 3, 5, 3, 3, 7, 7, 5, 3, 109, 17, 5, 13, 17, 5, 3, 17, 67, 11, 89, 13, 17, 7, 89, 31, 29, 19, 37, 5, 7, 29, 3, 79, 43, 41, 3, 11, 53, 5, 13, 3, 29, 11, 137, 179, 227, 11, 11, 97, 59, 53, 11, 3, 83, 17, 47, 19, 19, 29, 73, 41, 3, 7, 11, 79, 71, 13, 41, 257, 19, 5, 151, 79, 3, 31, 19, 79, 5, 281, 5, 37, 263, 139, 17, 23, 127, 223, 151, 149, 131, 113, 3, 47, 41, 59, 31, 23, 89
Offset: 0
Keywords
Links
- Pierre CAMI, Table of n, a(n) for n = 0..2642
Crossrefs
Cf. A085427.
Programs
-
Mathematica
Table[p=3; prod=6; While[! PrimeQ[prod*2^n-1], p=NextPrime[p]; prod=prod*p]; p, {n, 0, 100}]
-
Sage
primorial = lambda n: prod(primes(n+1)) # includes n, if prime A176994 = lambda n: next(p for p in Primes() if p > 2 and is_pseudoprime(primorial(p)*2**n-1)) # D. S. McNeil, Dec 09 2010