A176996 Numbers n such that sum of divisors, sigma(n), and sum of the proper divisors, sigma(n)-n, are both square.
1, 3, 119, 527, 935, 3591, 3692, 6887, 12319, 47959, 65151, 97767, 99116, 202895, 237900, 373319, 438311, 699407, 734111, 851927, 957551, 1032156, 1064124, 1437599, 1443959, 2858687, 3509231, 3699311, 4984199, 7237415
Offset: 1
Keywords
Examples
119 has divisors 1, 7, 17, 119; it is in the list because 1+7+17+119 = 144 = 12^2 and 1+7+17 = 25 = 5^2.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..300
- Antonio Roldan Martinez, La suma de sus divisores es cuadrado perfecto
Crossrefs
Programs
-
Mathematica
Intersection[Select[Range[10^5], IntegerQ[Sqrt[-# + Plus@@Divisors[#]]] &], Select[Range[10^5], IntegerQ[Sqrt[Plus@@Divisors[#]]] &]] (* Alonso del Arte, Dec 08 2010 *) t = {}; Do[If[And @@ IntegerQ /@ Sqrt[{x = DivisorSigma[1, n], x - n}], AppendTo[t, n]], {n, 10^6}]; t (* Jayanta Basu, Jul 27 2013 *) sdQ[n_]:=Module[{d=DivisorSigma[1,n]},AllTrue[{Sqrt[d],Sqrt[d-n]}, IntegerQ]]; Select[Range[73*10^5],sdQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 17 2018 *)
-
Sage
is_A176996 = lambda n: is_square(sigma(n)) and is_square(sigma(n)-n) # D. S. McNeil, Dec 09 2010
Comments