A177012 Numbers k such that k^k == -1 (mod phi(k)).
1, 2, 3, 15, 87, 255, 11759, 26279, 39455, 43919, 65535, 112895, 443807, 1347455, 1464911, 1568255, 1604559, 1968095, 2441559, 5948799, 16210655, 39624767, 39839039, 59187455, 81624279, 83623935, 251009695, 256685439, 338979839, 434357967, 455345855, 471783935, 487722815, 518291135, 596835839
Offset: 1
Keywords
Examples
phi(15)=8 and 15^15 == -1 (mod 8), so 15 is in the sequence.
Programs
-
Mathematica
v={};Do[If[PowerMod[n,n,EulerPhi[n]]==EulerPhi[n]-1,AppendTo[v,n]; Print[v]],{n,200000000}]
Extensions
a(27)-a(29) from Jahangeer Kholdi, Dec 10 2014
a(30)-a(35) from Farideh Firoozbakht, Dec 10 2014
Comments