A294646 a(n) = (1/2)^(2*n) mod (2*n+1).
1, 1, 1, 7, 1, 1, 4, 1, 1, 16, 1, 11, 25, 1, 1, 25, 4, 1, 10, 1, 1, 16, 1, 36, 13, 1, 9, 43, 1, 1, 16, 61, 1, 52, 1, 1, 64, 60, 1, 79, 1, 16, 22, 1, 64, 70, 44, 1, 70, 1, 1, 16, 1, 1, 28, 1, 59, 16, 4, 67, 31, 11, 1, 97, 1, 106, 79, 1, 1, 106, 69, 136, 100, 1, 1, 52, 64, 1, 40, 32, 1, 31, 1, 131, 169
Offset: 1
Keywords
Examples
For n = 3, 2*n+1 = 7, (1/2)^6 == 4^6 == 1 (mod 7) so a(3)=1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
seq((1/2 mod (2*n+1)) &^(2*n) mod (2*n+1), n=1..200);
-
PARI
a(n) = (1/2)^(2*n) % (2*n+1); \\ Michel Marcus, Nov 06 2017
Comments