cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177044 a(n) = 103*(n-1)-a(n-1) with n>1, a(1)=38.

Original entry on oeis.org

38, 65, 141, 168, 244, 271, 347, 374, 450, 477, 553, 580, 656, 683, 759, 786, 862, 889, 965, 992, 1068, 1095, 1171, 1198, 1274, 1301, 1377, 1404, 1480, 1507, 1583, 1610, 1686, 1713, 1789, 1816, 1892, 1919, 1995, 2022, 2098, 2125, 2201, 2228, 2304, 2331, 2407, 2434, 2510, 2537
Offset: 1

Views

Author

Vincenzo Librandi, Dec 09 2010

Keywords

Comments

Positive numbers k such that k^2 == 2 (mod 103).

Programs

  • Magma
    [(103+49*(-1)^(n-1)+206*(n-1))/(4): n in [1..50]];
  • Mathematica
    CoefficientList[Series[(38 + 27 x + 38 x^2)/((1 + x) (x - 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 24 2014 *)
    LinearRecurrence[{1,1,-1},{38,65,141},50] (* Harvey P. Dale, Nov 21 2021 *)

Formula

a(n) = (103+49*(-1)^(n-1)+206*(n-1))/4.
G.f.: x*(38+27*x+38*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Aug 24 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(27*Pi/206)*Pi/103. - Amiram Eldar, Feb 28 2023