cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177046 a(n) = 127*(n-1)-a(n-1) with n>1, a(1)=16.

Original entry on oeis.org

16, 111, 143, 238, 270, 365, 397, 492, 524, 619, 651, 746, 778, 873, 905, 1000, 1032, 1127, 1159, 1254, 1286, 1381, 1413, 1508, 1540, 1635, 1667, 1762, 1794, 1889, 1921, 2016, 2048, 2143, 2175, 2270, 2302, 2397, 2429, 2524, 2556, 2651, 2683, 2778, 2810, 2905, 2937, 3032, 3064
Offset: 1

Views

Author

Vincenzo Librandi, Dec 09 2010

Keywords

Comments

Positive numbers k such that k^2 == 2 (mod 127).

Programs

  • Magma
    [(127-63*(-1)^(n-1)+254*(n-1))/(4): n in [1..50]];
  • Mathematica
    LinearRecurrence[{1,1,-1},{16,111,143},50] (* Harvey P. Dale, May 30 2014 *)

Formula

a(n) = (127-63*(-1)^(n-1)+254*(n-1))/4.
a(n) = a(n-1)+a(n-2)-a(n-3).
G.f.: x*(16+95*x+16*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Aug 24 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(16*Pi/127)*Pi/127. - Amiram Eldar, Feb 28 2023