cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177176 Partial sums of round(n^2/13).

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 7, 11, 16, 22, 30, 39, 50, 63, 78, 95, 115, 137, 162, 190, 221, 255, 292, 333, 377, 425, 477, 533, 593, 658, 727, 801, 880, 964, 1053, 1147, 1247, 1352, 1463, 1580, 1703, 1832, 1968, 2110, 2259, 2415, 2578, 2748, 2925, 3110, 3302
Offset: 0

Views

Author

Mircea Merca, Dec 10 2010

Keywords

Comments

The round function is defined here by round(x) = floor(x + 1/2).

Examples

			a(13) = 0 + 0 + 0 + 1 + 1 + 2 + 3 + 4 + 5 + 6 + 8 + 9 + 11 + 13 = 63.
		

Crossrefs

Programs

  • Magma
    [Round(n*(n+1)*(2*n+1)/78): n in [0..60]]; // Vincenzo Librandi, Jun 23 2011
  • Maple
    seq(round(n*(n+1)*(2*n+1)/78),n=0..50)
  • PARI
    s=0;vector(90,n,s+=n^2\13)
    

Formula

a(n) = round(n*(n+1)*(2*n+1)/78).
a(n) = floor((n+3)*(2*n^2 - 3*n + 10)/78).
a(n) = ceiling((n-2)*(2*n^2 + 7*n + 15)/78).
a(n) = a(n-13) + (n+1)*(n-13) + 63, n > 12.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-13) - 3*a(n-14) + 3*a(n-15) - a(n-16) with g.f. x^3*(1+x)*(x^2 - x + 1)*(x^6 - x^5 + x^4 - x^3 + x^2 - x + 1) / ( (x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x-1)^4 ). - R. J. Mathar, Dec 13 2010