cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177210 Numbers k that are the products of two distinct primes such that 2*k-1 are also products of two distinct primes.

Original entry on oeis.org

26, 33, 35, 39, 46, 58, 62, 65, 93, 94, 111, 118, 119, 133, 134, 146, 155, 161, 178, 183, 202, 206, 209, 214, 219, 226, 235, 237, 247, 249, 253, 259, 267, 287, 291, 295, 299, 334, 335, 341, 362, 377, 382, 386, 391, 393, 395, 407, 422, 445, 447, 451, 453, 478
Offset: 1

Views

Author

Keywords

Examples

			26 is a term because 26 = 2*13 and 2*26 - 1 = 51 = 3*17;
33 is a term because 33 = 3*11 and 2*33 - 1 = 65 = 5*13.
		

Crossrefs

Cf. A006881.

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[If[f[n]&&f[2*n-1],AppendTo[lst,n]],{n,0,4*6!}];lst
    Select[Range[500],PrimeNu[#]==PrimeOmega[#]==PrimeNu[2#-1] == PrimeOmega[ 2#-1] == 2&] (* Harvey P. Dale, May 23 2014 *)