A177210 Numbers k that are the products of two distinct primes such that 2*k-1 are also products of two distinct primes.
26, 33, 35, 39, 46, 58, 62, 65, 93, 94, 111, 118, 119, 133, 134, 146, 155, 161, 178, 183, 202, 206, 209, 214, 219, 226, 235, 237, 247, 249, 253, 259, 267, 287, 291, 295, 299, 334, 335, 341, 362, 377, 382, 386, 391, 393, 395, 407, 422, 445, 447, 451, 453, 478
Offset: 1
Keywords
Examples
26 is a term because 26 = 2*13 and 2*26 - 1 = 51 = 3*17; 33 is a term because 33 = 3*11 and 2*33 - 1 = 65 = 5*13.
Crossrefs
Cf. A006881.
Programs
-
Mathematica
f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[If[f[n]&&f[2*n-1],AppendTo[lst,n]],{n,0,4*6!}];lst Select[Range[500],PrimeNu[#]==PrimeOmega[#]==PrimeNu[2#-1] == PrimeOmega[ 2#-1] == 2&] (* Harvey P. Dale, May 23 2014 *)