A177211 Numbers k that are the products of two distinct primes such that 2*k-1 and 4*k-3 are also products of two distinct primes.
33, 118, 119, 134, 146, 226, 247, 249, 287, 295, 334, 335, 386, 391, 393, 395, 422, 478, 493, 497, 502, 519, 551, 583, 589, 614, 629, 634, 694, 697, 721, 731, 749, 755, 789, 802, 817, 843, 879, 898, 955, 958, 985, 989, 1003, 1037, 1079, 1114, 1154, 1159, 1177
Offset: 1
Keywords
Examples
33 is a term because 33 = 3*11, 2*33 - 1 = 65 = 5*13 and 2*65 - 1 = 4*33 - 3 = 129 = 3*43.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[If[f[n]&&f[2*n-1]&&f[4*n-3],AppendTo[lst,n]],{n,0,7!}];lst tdpQ[n_]:=PrimeNu[n]==PrimeOmega[n]==PrimeNu[2n-1]==PrimeOmega[2n-1] == PrimeNu[4n-3]==PrimeOmega[4n-3]==2; Select[Range[1200],tdpQ] (* Harvey P. Dale, Nov 15 2020 *)
Extensions
Definition clarified by Harvey P. Dale, Nov 15 2020