cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177212 Numbers k that are the products of two distinct primes such that 2*k-1, 4*k-3 and 8*k-7 are also products of two distinct primes.

Original entry on oeis.org

247, 249, 295, 395, 422, 478, 493, 502, 519, 589, 634, 694, 721, 755, 955, 1255, 1267, 1294, 1306, 1351, 1387, 1441, 1522, 1546, 1727, 1762, 1942, 2031, 2119, 2155, 2323, 2374, 2449, 2491, 2509, 2533, 2587, 2623, 2661, 2733, 2773, 3005, 3039, 3091, 3334
Offset: 1

Views

Author

Keywords

Examples

			247 is a term because 247 = 13*19, 2*247 - 1 = 493 = 17*29, 4*247-3 = 985 = 5*197, and 8*247 - 1 = 1969 = 11*179.
		

Crossrefs

Programs

  • Maple
    isA006881:= proc(n) local F;
      F:= ifactors(n)[2];
      nops(F)=2 and F[1,2]+F[2,2]=2
    end proc:
    filter:= n -> andmap(isA006881, [n,2*n-1,4*n-3,8*n-7]);
    select(filter, [$1..10000]); # Robert Israel, Jul 11 2017
  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[If[f[n]&&f[2*n-1]&&f[4*n-3]&&f[8*n-7],AppendTo[lst,n]],{n,0,3*7!}];lst
    p2dpQ[n_]:=Transpose[FactorInteger[n]][[2]]=={1,1}; With[{s=Select[Range[ 3500], p2dpQ]},Select[s,AllTrue[{2#-1,4#-3,8#-7},p2dpQ]&]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 27 2015 *)