A177212 Numbers k that are the products of two distinct primes such that 2*k-1, 4*k-3 and 8*k-7 are also products of two distinct primes.
247, 249, 295, 395, 422, 478, 493, 502, 519, 589, 634, 694, 721, 755, 955, 1255, 1267, 1294, 1306, 1351, 1387, 1441, 1522, 1546, 1727, 1762, 1942, 2031, 2119, 2155, 2323, 2374, 2449, 2491, 2509, 2533, 2587, 2623, 2661, 2733, 2773, 3005, 3039, 3091, 3334
Offset: 1
Keywords
Examples
247 is a term because 247 = 13*19, 2*247 - 1 = 493 = 17*29, 4*247-3 = 985 = 5*197, and 8*247 - 1 = 1969 = 11*179.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA006881:= proc(n) local F; F:= ifactors(n)[2]; nops(F)=2 and F[1,2]+F[2,2]=2 end proc: filter:= n -> andmap(isA006881, [n,2*n-1,4*n-3,8*n-7]); select(filter, [$1..10000]); # Robert Israel, Jul 11 2017
-
Mathematica
f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[If[f[n]&&f[2*n-1]&&f[4*n-3]&&f[8*n-7],AppendTo[lst,n]],{n,0,3*7!}];lst p2dpQ[n_]:=Transpose[FactorInteger[n]][[2]]=={1,1}; With[{s=Select[Range[ 3500], p2dpQ]},Select[s,AllTrue[{2#-1,4#-3,8#-7},p2dpQ]&]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 27 2015 *)