A177213 Numbers k that are the products of two distinct primes such that 2*k-1, 4*k-3, 8*k-7 and 16*k-15 are also products of two distinct primes.
247, 295, 478, 634, 694, 721, 1255, 1267, 1294, 1387, 1546, 1762, 1942, 2323, 2374, 2773, 3005, 3334, 3403, 3883, 3949, 4126, 4714, 4741, 4777, 5062, 5269, 5287, 5353, 5422, 5617, 6583, 6805, 7273, 7495, 8587, 8767, 9017, 9406, 9427, 9847, 10018
Offset: 1
Keywords
Examples
247 is a term because 247 = 13*19, 2*247 - 1 = 493 = 17*29, 4*247 - 3 = 985 = 5*197, 8*247 - 1 = 1969 = 11*179, and 16*247 - 15 = 3937 = 31*127.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[If[f[n]&&f[2*n-1]&&f[4*n-3]&&f[8*n-7]&&f[16*n-15],AppendTo[lst,n]],{n,0,8!}];lst ptdpQ[n_]:=PrimeNu[n]==PrimeOmega[n]==2; Select[Range[11000],AllTrue[ {#,2#-1,4#-3,8#-7,16#-15},ptdpQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 30 2016 *)