cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177216 Numbers k that are the products of two distinct primes such that 2*k-1, 4*k-3, 8*k-7, 16*k-15, 32*k-31, 64*k-63 and 128*k-127 are also products of two distinct primes.

Original entry on oeis.org

11293, 12139, 25399, 31261, 36199, 44869, 49471, 62521, 72397, 83086, 89737, 91705, 98941, 124846, 125041, 134023, 138994, 144793, 164041, 166171, 170431, 173311, 182527, 199543, 224962, 244294, 258169, 259891, 263086, 275281, 277987
Offset: 1

Views

Author

Keywords

Examples

			11293 is a term because 11293 = 23*491, 2*11293 - 1 = 22585 = 5*4517, 4*11293 - 1 = 45169 = 17*2657, 8*11293 - 1 = 90337 = 13*6949, 16*11293 - 1 = 180673 = 79*2287, 32*11293 - 1 = 361345 = 5*72269, 64*11293 - 1 = 722689 = 11*65699, and 128*11293 - 1 = 1445377 = 193*7489.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[If[f[n]&&f[2*n-1]&&f[4*n-3]&&f[8*n-7]&&f[16*n-15]&&f[32*n-31]&&f[64*n-63]&&f[128*n-127],AppendTo[lst,n]],{n,11293,4*9!}];lst
    tdpQ[n_]:=Module[{f=Table[n*2^i-(2^i-1),{i,0,7}]},And@@(Transpose[ FactorInteger[ #]][[2]]=={1,1}&/@f)]; Select[Range[300000],tdpQ] (* Harvey P. Dale, Apr 02 2015 *)

Extensions

Example moved from Comments field to Example field by Harvey P. Dale, Apr 02 2015