cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A177223 Numbers k that are the products of two distinct primes such that 2*k+1, 4*k+3 and 8*k+7 are also products of two distinct primes.

Original entry on oeis.org

145, 203, 291, 298, 407, 497, 649, 707, 758, 815, 899, 926, 959, 995, 1079, 1094, 1139, 1142, 1157, 1313, 1403, 1415, 1461, 1497, 1538, 1639, 1658, 1691, 1857, 1934, 1945, 1991, 2123, 2159, 2217, 2234, 2315, 2603, 2629, 2807, 2991, 3215, 3254, 3279, 3305
Offset: 1

Views

Author

Keywords

Comments

A number k is the product of two distinct primes iff k = p*q where p and q are distinct primes. - N. J. A. Sloane, Jan 11 2025

Examples

			145 is a term because 145 = 5*29, 2*145 + 1 = 291 = 3*97, 4*145 + 1 = 583 = 11*53, and 8*145 + 1 = 1167 = 3*389.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[If[f[n]&&f[2*n+1]&&f[4*n+3]&&f[8*n+7],AppendTo[lst,n]],{n,0,2*7!}];lst
    tdpQ[n_]:=With[{c={n, 2n+1, 4n+3,8n+7}},PrimeNu[c]==PrimeOmega[c]=={2,2,2,2}]; Select[Range[3500],tdpQ] (* Harvey P. Dale, Jan 11 2025 *)
Showing 1-1 of 1 results.