cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177252 Triangle read by rows: T(n,k) is the number of permutations of [n] having k adjacent 4-cycles (0 <= k <= floor(n/4)), i.e., having k cycles of the form (i, i+1, i+2, i+3).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 118, 2, 714, 6, 5016, 24, 40201, 118, 1, 362163, 714, 3, 3623772, 5016, 12, 39876540, 40200, 60, 478639079, 362163, 357, 1, 6223394516, 3623772, 2508, 4, 87138394540, 39876540, 20100, 20, 1307195547720, 478639080, 181080, 120
Offset: 0

Views

Author

Emeric Deutsch, May 07 2010

Keywords

Comments

Row n contains 1 + floor(n/4) entries.
Sum of entries in row n = n! (A000142).

Examples

			T(9,2)=3 because we have (1234)(5678)(9), (1234)(5)(6789), and (1)(2345)(6789).
Triangle starts:
     1;
     1;
     2;
     6;
    23,  1;
   118,  2;
   714,  6;
  5016, 24;
		

Crossrefs

Columns k=0-3 give A177253, A369098, A370652, A370653.
Cf. A000142 (row sums).

Programs

  • Magma
    A177252:= func< n,k | (&+[(-1)^j*Factorial(n-3*k-3*j)/(Factorial(k) *Factorial(j)): j in [0..Floor((n-4*k)/4)]]) >;
    [A177252(n,k): k in [0..Floor(n/4)], n in [0..20]]; // G. C. Greubel, Apr 28 2024
    
  • Maple
    T := proc (n, k) options operator, arrow: sum((-1)^(k+j)*binomial(j, k)*factorial(n-3*j)/factorial(j), j = 0 .. floor((1/4)*n)) end proc: for n from 0 to 15 do seq(T(n, k), k = 0 .. floor((1/4)*n)) end do; % yields sequence in triangular form
  • Mathematica
    T[n_, k_]:= T[n, k]= Sum[(-1)^(k+j)*Binomial[j,k]*(n-3 j)!/j!, {j,0,n/4}];
    Table[T[n, k], {n, 0, 15}, {k, 0, n/4}] // Flatten (* Jean-François Alcover, Nov 17 2017 *)
  • SageMath
    def A177252(n,k): return sum((-1)^j*factorial(n-3*k-3*j)/(factorial(k) *factorial(j)) for j in range(1+(n-4*k)//4))
    flatten([[A177252(n,k) for k in range(1+n//4)] for n in range(21)]) # G. C. Greubel, Apr 28 2024

Formula

T(n,k) = Sum_{j=0..floor(n/4)} (-1)^(k+j)*binomial(j,k)*(n-3*j)!/j!.
T(n,0) = A177253(n).
Sum_{k>=0} k*T(n,k) = (n-3)! (n >= 4).
G.f. of column k: (1/k!) * Sum_{j>=k} j! * x^(j+3*k) / (1+x^4)^(j+1). - Seiichi Manyama, Feb 24 2024