cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177255 a(n) = Sum_{j=1..n} j*B(j-1), where B(k) = A000110(k) are the Bell numbers.

Original entry on oeis.org

0, 1, 3, 9, 29, 104, 416, 1837, 8853, 46113, 257583, 1533308, 9676148, 64452909, 451475027, 3314964857, 25442301577, 203604718076, 1695172374548, 14654631691569, 131309475792709, 1217516798735521, 11664652754184043, 115319114738472472, 1174967255260496776
Offset: 0

Views

Author

Emeric Deutsch, May 07 2010

Keywords

Comments

Number of adjacent blocks in all partitions of the set {1,2,...,n}. An adjacent block is a block of the form (i, i+1, i+2, ...). Example: a(3)=9 because in 1-2-3, 1-23, 12-3, 13-2, and 123 we have 3, 2, 2, 1, and 1 adjacent blocks, respectively.

Crossrefs

Partial sums of A052889.

Programs

  • Magma
    [n eq 0 select 0 else (&+[j*Bell(j-1): j in [1..n]]): n in [0..30]]; // G. C. Greubel, May 11 2024
    
  • Maple
    with(combinat): a := proc (n) options operator, arrow: sum(j*bell(j-1), j = 1 .. n) end proc; seq(a(n), n = 0 .. 23);
  • Mathematica
    With[{nn=30},Join[{0},Accumulate[BellB[Range[0,nn-1]]Range[nn]]]] (* Harvey P. Dale, Nov 10 2014 *)
  • SageMath
    [sum(j*bell_number(j-1) for j in range(1,1+n)) for n in range(31)] # G. C. Greubel, May 11 2024

Formula

a(n) = Sum_{k=0..n} k * A177254(n,k).