cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177258 Number of derangements of {1,2,...,n} having no adjacent transpositions.

Original entry on oeis.org

1, 0, 0, 2, 7, 36, 225, 1610, 13104, 119548, 1208583, 13413960, 162176105, 2121703324, 29866022640, 450112042926, 7231658709455, 123388310103660, 2228221240575337, 42459591881035062, 851420058861276576, 17922280827967843160, 395141598274153826095
Offset: 0

Views

Author

Emeric Deutsch, May 08 2010

Keywords

Examples

			a(4)=7 because we have (1342), (13)(24), (1324), (1432), (1423), (1234), and (1243).
		

Crossrefs

Programs

  • Magma
    F:=Factorial;
    A177258:= func< n | (&+[(&+[(-1)^(j+k)*F(n-k)/(F(j)*F(k)): k in [0..Floor((n-j)/2)]]): j in [0..n]]) >;
    [A177258(n): n in [0..40]]; // G. C. Greubel, May 13 2024
    
  • Maple
    p := 1: q := 2: a := proc (n) local ct, t, s; ct := 0: for s from 0 to n/p do for t from 0 to n/q do if p*s+q*t <= n then ct := ct+(-1)^(s+t)*factorial(n-(p-1)*s-(q-1)*t)/(factorial(s)*factorial(t)) else end if end do end do: ct end proc; seq(a(n), n = 0 .. 22);
  • Mathematica
    p = 1; q = 2; a[n_] := Module[{ct, t, s}, ct = 0; For[s = 0, s <= n/p, s++, For[t = 0, t <= n/q, t++, If[p*s + q*t <= n, ct = ct + (-1)^(s+t) * Factorial[n - (p-1)*s - (q-1)*t]/(Factorial[s]*Factorial[t])]]]; ct];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 24 2017, translated from Maple *)
  • SageMath
    f=factorial;
    def A177258(n): return sum(sum((-1)^(j+k)*f(n-k)/(f(j)*f(k)) for k in range(1+(n-j)//2)) for j in range(n+1))
    [A177258(n) for n in range(41)] # G. C. Greubel, May 13 2024

Formula

a(n) = Sum_{s=0..n} Sum_{t=0..floor((n-s)/2)} (-1)^(s+t)*(n-t)!/(s!*t!).
G.f.: 1/Q(0), where Q(k)=1 + x*(1+x) - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
a(n) ~ exp(-1) * n!. - Vaclav Kotesovec, Dec 10 2021
Conjecture D-finite with recurrence a(n) = (n-1)*a(n-1) + (n-1)*a(n-2) + (n-1)*a(n-3) + a(n-4). - R. J. Mathar, Jul 26 2022
G.f.: Sum_{k>=0} k! * x^k * ( (1-x)/(1-x^3) )^(k+1). - Seiichi Manyama, Feb 20 2024