cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A177258 Number of derangements of {1,2,...,n} having no adjacent transpositions.

Original entry on oeis.org

1, 0, 0, 2, 7, 36, 225, 1610, 13104, 119548, 1208583, 13413960, 162176105, 2121703324, 29866022640, 450112042926, 7231658709455, 123388310103660, 2228221240575337, 42459591881035062, 851420058861276576, 17922280827967843160, 395141598274153826095
Offset: 0

Views

Author

Emeric Deutsch, May 08 2010

Keywords

Examples

			a(4)=7 because we have (1342), (13)(24), (1324), (1432), (1423), (1234), and (1243).
		

Crossrefs

Programs

  • Magma
    F:=Factorial;
    A177258:= func< n | (&+[(&+[(-1)^(j+k)*F(n-k)/(F(j)*F(k)): k in [0..Floor((n-j)/2)]]): j in [0..n]]) >;
    [A177258(n): n in [0..40]]; // G. C. Greubel, May 13 2024
    
  • Maple
    p := 1: q := 2: a := proc (n) local ct, t, s; ct := 0: for s from 0 to n/p do for t from 0 to n/q do if p*s+q*t <= n then ct := ct+(-1)^(s+t)*factorial(n-(p-1)*s-(q-1)*t)/(factorial(s)*factorial(t)) else end if end do end do: ct end proc; seq(a(n), n = 0 .. 22);
  • Mathematica
    p = 1; q = 2; a[n_] := Module[{ct, t, s}, ct = 0; For[s = 0, s <= n/p, s++, For[t = 0, t <= n/q, t++, If[p*s + q*t <= n, ct = ct + (-1)^(s+t) * Factorial[n - (p-1)*s - (q-1)*t]/(Factorial[s]*Factorial[t])]]]; ct];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 24 2017, translated from Maple *)
  • SageMath
    f=factorial;
    def A177258(n): return sum(sum((-1)^(j+k)*f(n-k)/(f(j)*f(k)) for k in range(1+(n-j)//2)) for j in range(n+1))
    [A177258(n) for n in range(41)] # G. C. Greubel, May 13 2024

Formula

a(n) = Sum_{s=0..n} Sum_{t=0..floor((n-s)/2)} (-1)^(s+t)*(n-t)!/(s!*t!).
G.f.: 1/Q(0), where Q(k)=1 + x*(1+x) - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
a(n) ~ exp(-1) * n!. - Vaclav Kotesovec, Dec 10 2021
Conjecture D-finite with recurrence a(n) = (n-1)*a(n-1) + (n-1)*a(n-2) + (n-1)*a(n-3) + a(n-4). - R. J. Mathar, Jul 26 2022
G.f.: Sum_{k>=0} k! * x^k * ( (1-x)/(1-x^3) )^(k+1). - Seiichi Manyama, Feb 20 2024

A177259 Number of derangements of {1,2,...,n} having no adjacent 3-cycles (an adjacent 3-cycle is a cycle of the form (i,i+1,i+2)).

Original entry on oeis.org

1, 0, 1, 1, 9, 41, 258, 1809, 14575, 131660, 1320264, 14551987, 174887262, 2276174790, 31895551245, 478783042890, 7665081036273, 130370168718467, 2347620603019159, 44620121619435141, 892663172726141844, 18750621868455013979, 412602921349249182309
Offset: 0

Views

Author

Emeric Deutsch, May 08 2010

Keywords

Examples

			a(5)=41 because among the 44 (= A000166(5)) derangements of {1,2,3,4,5} only (12)(345), (123)(45), and (15)(234) have adjacent 3-cycles.
		

Crossrefs

Programs

  • Magma
    F:=Factorial;
    A177258:= func< n | (&+[(&+[(-1)^(j+k)*F(n-2*k)/(F(j)*F(k)): k in [0..Floor((n-j)/3)]]): j in [0..n]]) >;
    [A177258(n): n in [0..40]]; // G. C. Greubel, May 13 2024
    
  • Maple
    a := proc (n) local ct, t, s: ct := 0: for s from 0 to n do for t from 0 to (1/3)*n do if s+3*t <= n then ct := ct+(-1)^(s+t)*factorial(n-2*t)/(factorial(s)*factorial(t)) else end if end do end do: ct end proc; seq(a(n), n = 0 .. 22);
  • Mathematica
    a[n_] := Module[{ct = 0, t, s}, For[s = 0, s <= n, s++, For[t = 0, t <= n/3, t++, If[s + 3*t <= n, ct = ct + (-1)^(s + t)*Factorial[n - 2*t] / (Factorial[s]*Factorial[t])]]]; ct];
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Nov 24 2017, translated from Maple *)
  • SageMath
    f=factorial;
    def A177259(n): return sum(sum((-1)^(j+k)*f(n-2*k)/(f(j)*f(k)) for k in range(1+(n-j)//3)) for j in range(n+1))
    [A177259(n) for n in range(41)] # G. C. Greubel, May 13 2024

Formula

a(n) = Sum_{s=0..n} Sum_{t=0..floor((n-s)/3)} (-1)^(s+t)*(n-2*t)!/(s!*t!).
a(n) ~ exp(-1) * n!. - Vaclav Kotesovec, Dec 10 2021
Conjecture: D-finite with recurrence a(n) = (n-1)*a(n-1) + (n-1)*a(n-2) + a(n-3) + (n-1)*a(n-4) + 2*a(n-6). - R. J. Mathar, Jul 26 2022
G.f.: Sum_{k>=0} k! * x^k / (1+x+x^3)^(k+1). - Seiichi Manyama, Feb 22 2024

A177261 Number of derangements of {1,2,...,n} having no adjacent 2-cycles and no adjacent 3-cycles (an adjacent q-cycle is a cycle of the form (i,i+1,i+2,...,i+q-1)).

Original entry on oeis.org

1, 0, 0, 1, 7, 35, 218, 1574, 12883, 117956, 1195590, 13295211, 160974037, 2108348871, 29704448652, 447997026724, 7201873573981, 122939256681704, 2221004487898100, 42336428273893565, 849195448479132811, 17879882855311478795, 394291291121879453430
Offset: 0

Views

Author

Emeric Deutsch, May 08 2010

Keywords

Examples

			a(5)=35 because among the 44 (= A000166(5)) derangements of {1,2,3,4,5} only (12)(345), (12)(354), (145)(23), (154)(23), (125)(34), (152)(34), (123)(45), (132)(45) , and (15)(234) have adjacent 2-cycles or adjacent 3-cycles (or both).
		

Crossrefs

Programs

  • Magma
    m:=30;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( (&+[Factorial(k)*(x*(1-x)/(1-x^4))^(k+1)/x: k in [0..m+2]]) )); // G. C. Greubel, May 13 2024
    
  • Maple
    a := proc (n) local ct, t, s, u: ct := 0: for s from 0 to n do for t from 0 to n do for u from 0 to n do if s+2*t+3*u <= n then ct := ct+(-1)^(s+t+u)*factorial(n-t-2*u)/(factorial(s)*factorial(t)*factorial(u)) else end if end do end do end do: ct end proc; seq(a(n), n = 0 .. 22);
  • Mathematica
    a[n_] := Sum[If[s + 2*t + 3*u <= n, (-1)^(s + t + u)*(n - t - 2 u)!/(s! t! u!), 0], {s, 0, n}, {t, 0, n}, {u, 0, n}];
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Dec 04 2017 *)
    With[{m=40}, CoefficientList[Series[Sum[k!*(x*(1-x)/(1-x^4))^(k+1)/x,{k,0,m+2}], {x,0,m}], x]] (* G. C. Greubel, May 13 2024 *)
  • SageMath
    m=30
    def A177261_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( sum(factorial(k)*(x*(1-x)/(1-x^4))^(k+1)/x for k in range(m+3)) ).list()
    A177261_list(m) # G. C. Greubel, May 13 2024

Formula

a(n) = Sum_{s=0..n} Sum_{t=0..floor((n-j)/2)} Sum_{u=0..floor((n-j-2*t)/3)} (-1)^(s+t+u)*(n-t-2*u)!/(s!*t!*u!).
a(n) ~ exp(-1) * n!. - Vaclav Kotesovec, Dec 10 2021
G.f.: Sum_{k>=0} k! * x^k * ( (1-x)/(1-x^4) )^(k+1). - Seiichi Manyama, Feb 20 2024
Showing 1-3 of 3 results.