A177265 Number of permutations of {1,2,...,n} having exactly one string of consecutive fixed points (including singletons).
1, 1, 4, 12, 57, 321, 2176, 17008, 150505, 1485465, 16170036, 192384876, 2483177809, 34554278857, 515620794592, 8212685046336, 139062777326001, 2494364438359953, 47245095998005060, 942259727190907180, 19737566982241851721, 433234326593362631601
Offset: 1
Keywords
Examples
a(4,1) = 12 because we have (the string of consecutive fixed points is between square brackets): [1]342, [1]423, [12]43, [1234], 3[2]41, 4[2]13, 4[23]1, 24[3]1, 41[3]2, 21[34], 231[4], and 312[4].
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..450
Programs
-
Magma
A000166:= func< n | Factorial(n)*(&+[(-1)^j/Factorial(j): j in [0..n]]) >; A177265:= func< n | n le 2 select 1 else Self(n-1) + n*A000166(n-1) >; [A177265(n): n in [1..30]]; // G. C. Greubel, May 19 2024
-
Maple
d := proc (n) options operator, arrow: factorial(n)*(sum((-1)^i/factorial(i), i = 0 .. n)) end proc: a := proc (n) options operator, arrow: 1/2-(1/2)*(-1)^n+add(d(j), j = 1 .. n) end proc; seq(a(n), n = 1 .. 22);
-
Mathematica
a[0] = 1; a[n_] := a[n] = n*a[n - 1] + (-1)^n; f[n_] := Sum[(n - k) a[n - k - 1], {k, 0, n-1}]; Array[f, 20] (* Robert G. Wilson v, Apr 01 2011 *)
-
SageMath
def A000166(n): return factorial(n)*sum((-1)^j/factorial(j) for j in range(n+1)) def a(n): return 1 if n<3 else a(n-1) + n*A000166(n-1) # a = A177265 [a(n) for n in range(1,31)] # G. C. Greubel, May 19 2024
Formula
a(n) = (1/2)*(1 - (-1)^n) + Sum_{j=1..n} d(j), where d(j) = A000166(j) are the derangement numbers.
a(1) = 1, a(2) = 1, a(n) = a(n-1) + n*A000166(n-1). - Daniel Suteu, Jan 25 2018
Conjecture: D-finite with recurrence a(n) - (n-1)*a(n-1) - (n-1)*a(n-2) +(n-1)*a(n-3) + (n-2)*a(n-4) = 0. - R. J. Mathar, Jul 01 2022
Comments