cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177265 Number of permutations of {1,2,...,n} having exactly one string of consecutive fixed points (including singletons).

Original entry on oeis.org

1, 1, 4, 12, 57, 321, 2176, 17008, 150505, 1485465, 16170036, 192384876, 2483177809, 34554278857, 515620794592, 8212685046336, 139062777326001, 2494364438359953, 47245095998005060, 942259727190907180, 19737566982241851721, 433234326593362631601
Offset: 1

Views

Author

Emeric Deutsch, May 25 2010

Keywords

Comments

Empirically the partial sums of A000240. - Sean A. Irvine, Jul 12 2022

Examples

			a(4,1) = 12 because we have (the string of consecutive fixed points is between square brackets): [1]342, [1]423, [12]43, [1234], 3[2]41, 4[2]13, 4[23]1, 24[3]1, 41[3]2, 21[34], 231[4], and 312[4].
		

Crossrefs

Column A180192(n,1).

Programs

  • Magma
    A000166:= func< n | Factorial(n)*(&+[(-1)^j/Factorial(j): j in [0..n]]) >;
    A177265:= func< n | n le 2 select 1 else Self(n-1) + n*A000166(n-1) >;
    [A177265(n): n in [1..30]]; // G. C. Greubel, May 19 2024
    
  • Maple
    d := proc (n) options operator, arrow: factorial(n)*(sum((-1)^i/factorial(i), i = 0 .. n)) end proc: a := proc (n) options operator, arrow: 1/2-(1/2)*(-1)^n+add(d(j), j = 1 .. n) end proc; seq(a(n), n = 1 .. 22);
  • Mathematica
    a[0] = 1; a[n_] := a[n] = n*a[n - 1] + (-1)^n; f[n_] := Sum[(n - k) a[n - k - 1], {k, 0, n-1}]; Array[f, 20] (* Robert G. Wilson v, Apr 01 2011 *)
  • SageMath
    def A000166(n): return factorial(n)*sum((-1)^j/factorial(j) for j in range(n+1))
    def a(n): return 1 if n<3 else a(n-1) + n*A000166(n-1) # a = A177265
    [a(n) for n in range(1,31)] # G. C. Greubel, May 19 2024

Formula

a(n) = (1/2)*(1 - (-1)^n) + Sum_{j=1..n} d(j), where d(j) = A000166(j) are the derangement numbers.
a(1) = 1, a(2) = 1, a(n) = a(n-1) + n*A000166(n-1). - Daniel Suteu, Jan 25 2018
Conjecture: D-finite with recurrence a(n) - (n-1)*a(n-1) - (n-1)*a(n-2) +(n-1)*a(n-3) + (n-2)*a(n-4) = 0. - R. J. Mathar, Jul 01 2022