A177267 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having genus k (see first comment for definition of genus).
1, 2, 0, 5, 1, 0, 14, 10, 0, 0, 42, 70, 8, 0, 0, 132, 420, 168, 0, 0, 0, 429, 2310, 2121, 180, 0, 0, 0, 1430, 12012, 20790, 6088, 0, 0, 0, 0, 4862, 60060, 174174, 115720, 8064, 0, 0, 0, 0, 16796, 291720, 1309308, 1624480, 386496, 0, 0, 0, 0, 0, 58786, 1385670, 9087078, 18748730, 10031736, 604800, 0, 0, 0, 0, 0, 208012, 6466460, 59306676, 188208020, 186698512, 38113920, 0
Offset: 1
Examples
T(3,1)=1 because 312 is the only permutation of {1,2,3} with genus 1 (we have p=312=(132), cp'=231*231=312=(132) and so g(p)=(1/2)(3+1-1-1)=1). Triangle starts: [ 1] 1, [ 2] 2, 0, [ 3] 5, 1, 0, [ 4] 14, 10, 0, 0, [ 5] 42, 70, 8, 0, 0, [ 6] 132, 420, 168, 0, 0, 0, [ 7] 429, 2310, 2121, 180, 0, 0, 0, [ 8] 1430, 12012, 20790, 6088, 0, 0, 0, 0, [ 9] 4862, 60060, 174174, 115720, 8064, 0, 0, 0, 0, [10] 16796, 291720, 1309308, 1624480, 386496, 0, 0, 0, 0, 0, [11] 58786, 1385670, 9087078, 18748730, 10031736, 604800, 0, 0, ..., [12] 208012, 6466460, 59306676, 188208020, 186698512, 38113920, 0, ..., [13] 742900, 29745716, 368588220, 1700309468, 2788065280, 1271140416, 68428800, 0, ..., ...
References
- S. Dulucq and R. Simion, Combinatorial statistics on alternating permutations, J. Algebraic Combinatorics, 8, 1998, 169-191.
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Cf. A178514 (genus of derangements), A178515 (genus of involutions), A178516 (genus of up-down permutations), A178517 (genus of non-derangement permutations), A178518 (permutations of [n] having genus 0 and p(1)=k), A185209 (genus of connected permutations), A218538 (genus of permutations avoiding [x,x+1]).
Row sums give A000142.
T(2n+1,n) gives A060593.
Programs
-
Maple
n := 8: with(combinat): P := permute(n): inv := proc (p) local j, q: for j to nops(p) do q[p[j]] := j end do: [seq(q[i], i = 1 .. nops(p))] end proc: nrcyc := proc (p) local nrfp, pc: nrfp := proc (p) local ct, j: ct := 0: for j to nops(p) do if p[j] = j then ct := ct+1 else end if end do: ct end proc: pc := convert(p, disjcyc): nops(pc)+nrfp(p) end proc: b := proc (p) local c: c := [seq(i+1, i = 1 .. nops(p)-1), 1]: [seq(c[p[j]], j = 1 .. nops(p))] end proc: gen := proc (p) options operator, arrow: (1/2)*nops(p)+1/2-(1/2)*nrcyc(p)-(1/2)*nrcyc(b(inv(p))) end proc: f[n] := sort(add(t^gen(P[j]), j = 1 .. factorial(n))): seq(coeff(f[n], t, j), j = 0 .. ceil((1/2)*n)-1); # yields the entries in the specified row n # second Maple program: b:= proc(n) option remember; `if`(n<2, 1, ((4*n-2)* b(n-1)+(n-2)*(n-1)^2*expand(x*b(n-2)))/(n+1)) end: T:= (n, k)-> coeff(b(n), x, k): seq(seq(T(n, k), k=0..n-1), n=1..12); # Alois P. Heinz, Feb 16 2024
-
Mathematica
T[ n_, k_] := If[ n < 1 || k >= n, 0, Module[{pn = Table[i, {i, n}]}, Do[ pn[[i]] = ((4 i - 2) pn[[i - 1]] + x (i - 2) (i - 1)^2 pn[[i - 2]])/(i + 1) // Expand, {i, 3, n}]; Coefficient[pn[[n]], x, k]]]; (* Michael Somos, Sep 02 2017 *)
Formula
Let p(n, x) := g.f. of row n. Then (n+1) * p(n, x) = (4*n-2) * p(n-1, x) + x * (n-2) * (n-1)^2 * p(n-2, x). - Michael Somos, Sep 02 2017
Extensions
Terms for rows 12 and 13 from Joerg Arndt, Jan 24 2011.
Comments