cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177339 Partial sums of round(n^2/44).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 8, 11, 14, 18, 22, 27, 33, 40, 47, 55, 64, 74, 85, 97, 110, 124, 139, 156, 174, 193, 213, 235, 258, 283, 309, 337, 366, 397, 430, 465, 501, 539, 579, 621, 665, 711, 759, 809, 861, 916, 973
Offset: 0

Views

Author

Mircea Merca, Dec 10 2010

Keywords

Comments

The round function is defined here by round(x) = floor(x + 1/2).
There are several sequences of integers of the form round(n^2/k) for whose partial sums we can establish identities as following (only for k = 2, ..., 9, 11, 12, 13, 16, 17, 19, 20, 28, 29, 36, 44).

Examples

			a(15) = 0 + 0 + 0 + 0 + 0 + 1 + 1 + 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 = 27.
		

Crossrefs

Programs

  • Magma
    [Round((2*n+1)*(2*n^2+2*n-15)/528): n in [0..60]]; // Vincenzo Librandi, Jun 23 2011
  • Maple
    seq(round(n*(n-2)*(2*n+7)/264),n=0..50)

Formula

a(n) = round((2*n+1)*(2*n^2 + 2*n - 15)/528).
a(n) = floor((n+5)*(2*n^2 - 7*n + 21)/264).
a(n) = ceiling((n-4)*(2*n^2 + 11*n + 30)/264).
a(n) = round(n*(n-2)*(2*n+7)/264).
a(n) = a(n-44) + (n+1)*(n-44) + 665, n > 43.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) + a(n-11) - 2*a(n-12) + 2*a(n-14) - a(n-15) with g.f. x^5*(1 - x^2 + x^4) / ( (1+x) *(x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) *(x-1)^4 ). - R. J. Mathar, Dec 13 2010